命题逻辑中常见联结词的详细说明,包括定义、等价形式、永真式示例及真值表。
1. 双向蕴含(↔)的等价形式
双向蕴含表示两个命题的真值相同,即“当且仅当”。其逻辑等价形式为:
A↔B≡(A→B)∧(B→A)
示例:
- A↔B 为真,当且仅当 A 和 B 同时为真或同时为假。
2. 永真式(Tautology)的示例
永真式是无论命题变量如何赋值,结果恒为真的公式。常见永真式如下:
永真式 | 名称 | 逻辑表达式 |
---|---|---|
排中律 | 命题逻辑基本定律 | A∨¬A |
矛盾律 | 命题逻辑基本定律 | ¬(A∧¬A) |
双重否定律 | 逻辑等价式 | A↔¬¬A |
同一律 | 逻辑等价式 | A→A |
德摩根定律(析取形式) | 逻辑等价式 | ¬(A∨B)↔(¬A∧¬B) |
3. 单向蕴含(→)的定义
单向蕴含表示“如果 A,那么 B”,其真值仅在 A 为真且 B 为假时为假,其余情况为真。
注意:
- 单向蕴含不表示因果关系,仅表示真值关系。
- 常见误解:当 A 为假时,无论 B 是否为真,A→B 恒为真。
4. 合取、析取、蕴含、双向蕴含的真值表
以下真值表中,A 和 B 为命题变量,取值 真(T) 或 假(F)。
**(1) 合取(A∧B)**
A | B | A∧B |
---|---|---|
T | T | T |
T | F | F |
F | T | F |
F | F | F |
**(2) 析取(A∨B)**
A | B | A∨B |
---|---|---|
T | T | T |
T | F | T |
F | T | T |
F | F | F |
**(3) 蕴含(A→B)**
A | B | A→B |
---|---|---|
T | T | T |
T | F | F |
F | T | T |
F | F | T |
**(4) 双向蕴含(A↔B)**
A | B | A↔B |
---|---|---|
T | T | T |
T | F | F |
F | T | F |
F | F | T |
5. 总结
- 双向蕴含等价于两个单向蕴含的合取((A→B)∧(B→A))。
- 永真式是逻辑系统的基础,常用于简化复杂公式或构造证明。
- 蕴含的真值表关键点:仅当 A 为真且 B 为假时,A→B 为假。
- 合取与析取是命题逻辑中最基本的运算,分别对应自然语言中的“且”和“或”。
建议练习:尝试构造以下公式的真值表以加深理解:
(A→B)↔(¬A∨B)
此公式是永真式,体现了蕴含与析取之间的等价关系。