Can‘t call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

在这里插入图片描述

This error occurs because you are trying to call the numpy() method on a tensor that still has gradients attached to it. Since the gradients are needed for backpropagation during training, PyTorch prevents you from converting the tensor to a numpy array.

To fix this issue, you can detach the tensor from the computation graph using the detach() method before converting it to a numpy array. Here’s an example:

loss = dpl.my_KLDivLoss(out, y)
loss_value = loss.detach().numpy()

Alternatively, if you don’t need to compute gradients for this specific tensor, you can use the with torch.no_grad() context manager to temporarily disable gradient computation:

with torch.no_grad():
    loss = dpl.my_KLDivLoss(out, y).numpy()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值