torch.nn.Conv2d()輸出張量大小(size)計算

  • torch.nn.Conv2d參數說明,分別以中英對照

        torch.nn.Conv2d(輸入通道, 輸出通道, 捲積核大小, 步幅, 填充)

        torch.nn.Conv2d(in_channels, out_channels, kernal_size, stride,padding)

  • 輸入Conv2d的張量需是四維的

        intput size : ([批次大小, 通道數, 輸入高度, 輸入寬度])

        intput size : ([batch_size, number of channels, height in pixels, width in pixels])

  • 輸出張量大小(size)計算公式
    •  批次數不變
    • 通道數變為輸出通道
    • 高輸出大小 : \left \lfloor \frac{輸入大小 + 2 \times 填充 - 捲積核大小}{步幅} \right \rfloor + 1
    • 寬輸出大小 : \left \lfloor \frac{輸入大小 + 2 \times 填充 - 捲積核大小}{步幅} \right \rfloor + 1
  • 範例
    import torch
    input1 = torch.randn(64,2,8,9)
    k = torch.nn.Conv2d(2,32,2,3,4)
    output = k(input1)
    print(output.size())
    
    #輸出為:torch.Size([64, 32, 5, 6])

    輸出張量大小(size),批次,通道,高,寬,分別為

    • 批次(batch_size) : 批次不變,故仍為64

    • 通道(channels) : 通道為Conv2d的輸出通道,故為32

    • 高(height) : \left \lfloor \tfrac{8+2\times 4 - 2}{3} \right \rfloor + 1 = 4 +1 = 5

    • 寬(width) : \left \lfloor \tfrac{9 + 2\times 4 - 2}{3} \right \rfloor + 1 = 5 + 1 = 6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值