yolov7基础知识先导篇

*免责声明:
1\此方法仅提供参考
2\搬了其他博主的操作方法,以贴上路径.
3*

场景一:MP

场景二:高效聚合网络

场景三:SPPCSPC

场景四:结构重参数化

场景五:标签分配–>细分方法:simOTA

场景六:模型复合缩放

场景一:MPC-B、MPC-N

1.1 MPC-B

在这里插入图片描述
在这里插入图片描述

   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  
class MP(nn.Module):
    def __init__(self, k=2):
        super(MP, self).__init__()
        self.m = nn.MaxPool2d(kernel_size=k, stride=k)

    def forward(self, x):
        return self.m(x)

1.2 MPC-N

在这里插入图片描述

在这里插入图片描述

   # MPC-H
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   #MPC-H
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],

场景二:高效聚合网络

VoVNet:实时目标检测的新backbone网络

在这里插入图片描述
在这里插入图片描述

1.1 VoVNet

强推先看–>场景十:新增模型:DenseNet

VovNet论文地址

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 VoVNet v2

论文地址:CenterMask论文中提出VoVNet v2

场景三:常见的Attention机制–>SENet

在这里插入图片描述
在这里插入图片描述

1.3 Yolov7中的ELAN结构

场景五: CSPNet

在这里插入图片描述
在这里插入图片描述

   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  

1.4 Yolov7中的ELAN-H结构

在这里插入图片描述

在这里插入图片描述

   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], 

场景三:SPPCSPC

空间金字塔池化改进 SPP / SPPF / ASPP / RFB / SPPCSPC

1.1 SPPCSPC

设计理念是什么?????欢迎讨论,很多博主这里结构画错了,这里是正解.

在这里插入图片描述

class SPPCSPC(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))

1.2 SPP与SPPF

在这里插入图片描述

1.3 SPP3

在这里插入图片描述

class SPP3(nn.Module):
    def __init__(self, c1, c2, k1):
        super().__init__()
        c_ = c1 // 2
        k1, k2, k3 = 3, 5, 7
        self.cn1 = Conv(c1, c_, 1, 1)
        self.cn2 = Conv(c_ * 4, c2, 1, 1)
        self.m1 = nn.AvgPool2d(kernel_size=k1, stride=1, padding=k1 // 2)
        self.m2 = nn.AvgPool2d(kernel_size=k2, stride=1, padding=k2 // 2)
        self.m3 = nn.AvgPool2d(kernel_size=k3, stride=1, padding=k3 // 2)

    def forward(self, x):
         x = self.cn1(x)
         with warnings.catch_warnings():
             warnings.simplefilter('ignore')
         m1 = self.m1(x)
         m2 = self.m2(m1)
         m3 = self.m3(m1)
         return self.cn2(torch.cat([x, m1, m2, m3],1))

场景四:结构重参数化

1.1 前言

结构重参数化:利用参数转换解耦训练和推理结构

解读模型压缩6:结构重参数化技术:进可暴力提性能,退可无损做压缩

请添加图片描述

请添加图片描述
请添加图片描述

1.2 ACNet

ACNet论文地址

【CNN结构设计】无痛的涨点技巧:ACNet

33卷积+13卷积+3*1卷积=白给的精度提升 | ICCV 2019

在这里插入图片描述
请添加图片描述
训练阶段
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
推理阶段
在这里插入图片描述
在这里插入图片描述
总结
在这里插入图片描述
在这里插入图片描述

1.3 RepVGG

论文地址

RepVGG算法详解

深度解读:RepVGG

比ResNet更强的RepVGG代码详解

在这里插入图片描述
在这里插入图片描述
训练阶段
在这里插入图片描述
在这里插入图片描述
推理阶段

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

不同版本

在这里插入图片描述

在这里插入图片描述

1.4 Yolov7中的RepConv

在这里插入图片描述

#Yolov7里面的RepConv借鉴的是RepVGG
# 重参化结构

class RepConv(nn.Module):
   
    #RepVGG网址 https://arxiv.org/abs/2101.03697

    def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
        super(RepConv, self).__init__()

        self.deploy = deploy        # deploy是推理部署的意思
        self.groups = g                # 输入的特征层分为几组,这是分组卷积概念,单卡GPU不用考虑,默认为1,分组卷积概念详见下面
        self.in_channels = c1       # 输入通道数
        self.out_channels = c2     #输出通道数

        assert k == 3
        assert autopad(k, p) == 1    # 为什么这么设置呢,图像padding=1后经过 3x3 卷积之后图像大小不变

        padding_11 = autopad(k, p) - k // 2

        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

        # 定义推理模型时,基本block就是一个简单的 conv2D
        if deploy:
            self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)

        else:
            # 定义训练模型时,基本block是 identity、1x1 conv_bn、3x3 conv_bn 组合

            # 如果是训练模式,就是执行identity操作+bn ,也就是输入直接+bn
            self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)

            # 普通的3x3的卷积+bn操作
            self.rbr_dense = nn.Sequential(
                nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
                nn.BatchNorm2d(num_features=c2),
            )
            
            # 普通的1x1的卷积+bn操作
            self.rbr_1x1 = nn.Sequential(
                nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
                nn.BatchNorm2d(num_features=c2),
            )

    
    def forward(self, inputs):

       # hasattr() 函数用于判断对象是否包含对应的属性,也就是如果上面是deploy模式,就有了rbr_reparam属性,也就是重参化参数
     
        if hasattr(self, "rbr_reparam"):
            return self.act(self.rbr_reparam(inputs))     # 推理阶段, conv2D 后 SiLU

        if self.rbr_identity is None:  #如果bn(x)的操作是0,也就是输入是0,那么输出为0
            id_out = 0
        else:                
            id_out = self.rbr_identity(inputs)
        
        # (返回3x3的卷积+bn)   +   (1x1的卷积1x1+bn)  + (identity+bn的结果)
        return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
    


    #repvgg的转换,也就是训练模式转换为部署模式
    def repvgg_convert(self):
        kernel, bias = self.get_equivalent_kernel_bias()
        return (
            kernel.detach().cpu().numpy(),
            bias.detach().cpu().numpy(),
        )

    

    #下面这个函数就是按照论文的方法把1×1卷积和Identity操作转化成3×3卷积的------------------------------------------------------------------
    #最后返回的是2个量:kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid和bias3x3 + bias1x1 + biasid。
    #分别代表这个等价的3×3卷积的权重和偏置。

    def get_equivalent_kernel_bias(self):
        
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)     # BN(3x3 卷积核两个参数 W 和 b)后 提出来
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)         #BN(1x1 卷积核两个参数 W 和 b)后 提出来
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        
        # 卷积核运算本质就是 W(x)+b,融合的策略是w相加,b相加 ,但是为啥 identity 可以提取W、b?看后面
        return (
            kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
            bias3x3 + bias1x1 + biasid,
        )
    

    #将1x1的卷积转换为3x3的卷积
    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
    # 这代码讲的是将 1x1 conv padding 一圈成 3x3 conv,填充的是0
    #                        [0  0  0] 
    #    [1]  >>>padding>>>  [0  1  0]
    #                        [0  0  0]   


    # 各分支的卷积进行bn操作,返回对应的bn
    # 融合bn操作,这个函数的作用是“吸BN”,是怎么返回w 核 b
    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
            # 当branch不是3x3、1x1、BN,那就返回 W=0, b=0
    
        # 普通的3x3的卷积+bn操作  self.rbr_dense = nn.Sequential( nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False), nn.BatchNorm2d(num_features=c2),)
        # 普通的1x1的卷积+bn操作  self.rbr_1x1 = nn.Sequential( nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),  nn.BatchNorm2d(num_features=c2), )
        # 当branch是3x3、1x1卷积时候,返回以上数据,为后面做融合 

        if isinstance(branch, nn.Sequential):
            kernel = branch[0].weight                              # conv权重  ,这里不考虑卷积带偏置项的情况
            running_mean = branch[1].running_mean    # BN mean
            running_var = branch[1].running_var            # BN val
            gamma = branch[1].weight                            # BN γ    
            beta = branch[1].bias                                      # BN β
            eps = branch[1].eps                                         # 防止分母为0 
         
             
        else:
            
            #如果是identity的操作,这里branch就是nn.BatchNorm2d ; 前文 self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None) 
            assert isinstance(branch, nn.BatchNorm2d)

            if not hasattr(self, "id_tensor"):
                input_dim = self.in_channels // self.groups     # 通道分组,单个GPU不用考虑,详情去搜索分组卷积

                # 定义 Conv size为(in_channles,  input_dim , 3,3)的全0数组
                kernel_value = np.zeros(
                    (self.in_channels, input_dim, 3, 3), dtype=np.float32
                )

                # 将卷积核中心部分部分赋予1, 1x1的卷积-->3x3的卷积的本质是 在1的周围填充0,也就是将(1,1)的位置设置为1
                #假如输入输出的通道数是3 , 也就是有3个卷积核 , 每个卷积核有3个1x1的卷积操作,
                # indentity-->3x3的卷积操作就是  将 (0 , 0 ,1,1) , (1,1,1,1), (2,2,1,1)的位置为0
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1

                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
           #这样操作以后的identity的权重就变为了3x3

            kernel = self.id_tensor                                     # conv权重
            running_mean = branch.running_mean        # BN mean 
            running_var = branch.running_var                 # BN va
            gamma = branch.weight                                 # BN γ 
            beta = branch.bias                                           # BN β           
            eps = branch.eps                                              # 防止分母为0 

        
        #BN(conv(x))  =  [ γ  *w  / 开平方(var)]  *x  +  β - γ  * mean /  开平方(var) 

        std = (running_var + eps).sqrt()

        #kernel是四维张量,而t是个1维向量,所以会t = (gamma / std).reshape(-1, 1, 1, 1)使其维度和kernel匹配上。
        t = (gamma / std).reshape(-1, 1, 1, 1)

        return kernel * t, beta - running_mean * gamma / std
     #--------------------------------------------------------------------------------------------------------------------------------------------------



    def fuse_conv_bn(self, conv, bn):

        std = (bn.running_var + bn.eps).sqrt()
        bias = bn.bias - bn.running_mean * bn.weight / std

        t = (bn.weight / std).reshape(-1, 1, 1, 1)
        weights = conv.weight * t

        bn = nn.Identity()
        conv = nn.Conv2d(in_channels = conv.in_channels,
                              out_channels = conv.out_channels,
                              kernel_size = conv.kernel_size,
                              stride=conv.stride,
                              padding = conv.padding,
                              dilation = conv.dilation,
                              groups = conv.groups,
                              bias = True,
                              padding_mode = conv.padding_mode)

        conv.weight = torch.nn.Parameter(weights)
        conv.bias = torch.nn.Parameter(bias)
        return conv

    def fuse_repvgg_block(self):    
        if self.deploy:
            return
        print(f"RepConv.fuse_repvgg_block")
                
        self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
        
        self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
        rbr_1x1_bias = self.rbr_1x1.bias
        weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
        
        # Fuse self.rbr_identity
        if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
            # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
            identity_conv_1x1 = nn.Conv2d(
                    in_channels=self.in_channels,
                    out_channels=self.out_channels,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    groups=self.groups, 
                    bias=False)
            identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
            identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
            # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
            identity_conv_1x1.weight.data.fill_(0.0)
            identity_conv_1x1.weight.data.fill_diagonal_(1.0)
            identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
            # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")

            identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
            bias_identity_expanded = identity_conv_1x1.bias
            weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])            
        else:
            # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
            bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
            weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )            
        

        #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
        #print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
        #print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")

        self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
        self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
                
        self.rbr_reparam = self.rbr_dense
        self.deploy = True

        if self.rbr_identity is not None:
            del self.rbr_identity
            self.rbr_identity = None

        if self.rbr_1x1 is not None:
            del self.rbr_1x1
            self.rbr_1x1 = None

        if self.rbr_dense is not None:
            del self.rbr_dense
            self.rbr_dense = None

场景五:标签分配–>细分方法:simOTA

在这里插入图片描述

请添加图片描述
请添加图片描述请添加图片描述
请添加图片描述

场景六:模型复合缩放

1.1 模型缩放

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 EfficientNet

EfficientNet论文地址

EfficientNet网络详解

【一看就懂】EfficientNet详解。凭什么EfficientNet号称当今最强?

神经结构搜索(Neural Architecture Search, NAS)学习

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

you did it
在这里插入图片描述

  • 27
    点赞
  • 193
    收藏
    觉得还不错? 一键收藏
  • 21
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值