【新手向】Rock5B配置AI环境并运行RKNN2 Demo测试NPU

一、环境与说明

版本
Rock5BV1.42
系统官方Debian11(2022-10-01版本)
  • 论坛是RKNN2 1.3版本,rk官方已经更新到1.4版本了,测试成功的就是最新1.4版本。这次测试npu花了不少时间,试了Ubuntu和两个版本的Debian。
  • 一直对RKNN很向往,这也是我购买Rock5B的原因,原来只用过英特尔的神经计算棒NCS2。

二、参考radxa论坛帖子(报错)

参考:https://forum.radxa.com/t/run-rknn2-demo-on-rock-5b/10914

步骤1.参看系统版本

我使用的是使用2022-10-01版本系统

root@rock-5b:/home/rock# uname -r
5.10.66-24-rockchip-gcb09ad15af75

步骤2.下载安装

https://github.com/radxa/rknpu2/releases/tag/20220512

在这里插入图片描述

下载完成后上传到Rock5B开发板上。

在这里插入图片描述

在这里插入图片描述

这里的lib库不能正常加载,也许是因为系统内核版本和贴主不同的原因。
在这里插入图片描述

我也不想去下载一个5月份的旧系统,我们这里就去RK自己的仓库去看看。

三、参考rk官方教程(成功)

上面论坛版本是RKNN2 1.3版本,目前rk官方已经更新到1.4版本了。

# 已经下载git,忽略
sudo apt-get install git
# 拉取一下
git clone https://github.com/rockchip-linux/rknpu2.git

在这里插入图片描述

# 配置文件
cd rknpu2
sudo cp ./runtime/RK3588/Linux/librknn_api/aarch64/* /usr/lib
sudo cp ./runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/* /usr/bin/

在这里插入图片描述

安装依赖文件

sudo apt-get update -y
sudo apt-get install -y gcc
sudo apt-get install -y python3-dev
sudo apt-get install -y python3-pip 
sudo apt-get install -y python3-numpy
sudo apt-get install -y python3-opencv
# 拉取rknn-toolkit2
git clone https://github.com/rockchip-linux/rknn-toolkit2.git

速度感人

在这里插入图片描述

# 安装rknn_toolkit_lite2
pip3 install ./rknn-toolkit2/rknn_toolkit_lite2/packages/rknn_toolkit_lite2-1.4.0-cp39-cp39-linux_aarch64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple/

在这里插入图片描述

运行测试文件

cd rknn-toolkit2/rknn_toolkit_lite2/examples/inference_with_lite
python3 test.py

在这里插入图片描述

这里我们使用NPU的环境就配置好了。

四、总结

  • 所谓配置好了NPU的使用环境,就是可以在python中调用rknnapi了,体现在我们的配置过程分为两步,第一步是配置好调用的libbin文件,第二步就是下载依赖文件来满足运行rknn_toolkit_lite2-1.4.0这个python库。

  • 上面拉取的仓库文件有很多是不需要的,如果网络不好,可以在电脑上下载后把需要安装的部分上传到Rock5B开发板即可。

  • RK毕竟是一个很大的企业,官方提供的教程一定是优秀的,这启发我在查找教程时,应该首先向官方寻求支持!

  • RKNN我还需要继续学习,因特尔的NCS2现在要500多块钱,用RK的NPU加速,岂不是省了,四舍五入板子板子没花钱(😎)

### 如何在RK3588上使能和配置RKNPU #### 安装必要的工具包 为了能够在RK3588平台上成功启动利用RKNPU,首先需要安装`rknpu2`库。这可以通过克隆GitHub仓库来完成: ```bash git clone https://github.com/rockchip-linux/rknpu2.git ``` 接着将编译后的共享对象文件复制到系统的标准路径下以便加载[^1]。 ```bash sudo cp rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so /usr/lib/ ``` #### 配置Python环境 对于希望使用Python进行开发的情况,则还需要设置相应的虚拟环境以及安装依赖项。具体操作可以参照官方文档说明来进行[^2]。 #### 设置硬件加速参数 为了让应用程序能够充分利用NPU资源,在实际部署过程中可能需要调整一些系统级别的配置选项。例如,通过命令行查看当前NPU负载情况可以帮助了解其工作状态;另外也可以考虑采用多线程编程技术优化性能表现,从而达到更高的帧率效果[^3]。 #### 示例代码展示如何初始化RKNPU 下面给出了一段简单的Python脚本作为例子,展示了怎样创建一个基于PaddleOCR的应用程序实例,指定它应该运行在哪种类型的计算设备之上——这里即指代RKNN Toolkit所代表的Rockchip NPU。 ```python from paddleocr import PaddleOCR, draw_ocr import cv2 # 初始化OCR模块时传入device='gpu'表示启用GPU/NPU模式 ocr = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True) img_path = 'example.jpg' result = ocr.ocr(img_path, cls=True) for line in result: print(line) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值