树莓派系列(十五):使用英特尔神经计算棒2(NCS2)

使用英特尔神经计算棒2(NCS2)

树莓派能运用神经棒的地方很多,学会使用它,可以帮助我们做很多很酷的事情。🥇
这篇博客大部分内容来自官网,英语好的建议直接去官网看!

使用本教程你需要以下条件

  1. armv71的架构
  2. Raspbian 10操作系统
  3. python3.7的环境

OpenVINO toolkit for Raspbian

1.下载OpenVINO toolkit for Raspbian安装包

下载网址:https://storage.openvinotoolkit.org/repositories/openvino/packages/2021.4.1/
直接最新版就完事了。
在这里插入图片描述
建议在电脑上下好,在传到树莓派上。我喜欢用Filezilla传输,推荐大家给使用这个。
在这里插入图片描述

2.安装安装包

cd ~/Downloads/
sudo mkdir -p /opt/intel/openvino_2021
sudo tar -xf  l_openvino_toolkit_runtime_raspbian_p_<version>.tgz --strip 1 -C /opt/intel/openvino_2021

我的版本是:l_openvino_toolkit_runtime_raspbian_p_2021.4.689.tgz
就是

sudo tar -xf  l_openvino_toolkit_runtime_raspbian_p_2021.4.689.tgz --strip 1 -C /opt/intel/openvino_2021

现在已经安装了OpenVINO工具包组件。仍然需要额外的配置步骤。继续下一节,安装外部软件依赖项、配置环境和设置USB规则。

安装外部软件依赖

构建推理引擎示例应用程序需要CMake* 3.7.2或更高版本。

sudo apt install cmake

CMake安装。继续到下一节设置环境变量。

设置环境变量

在编译和运行OpenVINO工具包应用程序之前,必须更新几个环境变量。运行以下脚本临时设置环境变量:

source /opt/intel/openvino_2021/bin/setupvars.sh

(可选)关闭shell时,OpenVINO环境变量将被删除。作为一个选项,您可以永久地设置环境变量,如下所示:

echo "source /opt/intel/openvino_2021/bin/setupvars.sh" >> ~/.bashrc

要测试您的更改,请打开一个新的终端。您将看到以下内容:

[setupvars.sh] OpenVINO environment initialized

为英特尔®神经计算棒2设备添加USB规则

此任务仅适用于您拥有英特尔®神经计算棒2设备的情况。

1.将当前Linux用户加入users组:

sudo usermod -a -G users "$(whoami)"

注销并登录后生效。

2.如果您没有修改.bashrc来永久设置环境变量,请在登录后再次运行setupvars.sh

source /opt/intel/openvino_2021/bin/setupvars.sh

3.要在Intel®神经计算棒2上执行推理,请运行install_NCS_udev_rules.sh脚本安装USB规则:

sh /opt/intel/openvino_2021/install_dependencies/install_NCS_udev_rules.sh

4.插入英特尔®神经计算棒2。

现在您已经准备好编译和运行Object Detection示例,以验证推理引擎的安装。

构建和运行对象检测样本

按照下面的步骤,使用OpenVINO工具包中的推理引擎样本使用预先训练的人脸检测模型。

1.导航到一个具有写访问权的目录,并创建一个示例构建目录。下面的例子使用了一个名为build的目录:

mkdir build && cd build

2.构建对象检测示例:

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-march=armv7-a" /opt/intel/openvino_2021/deployment_tools/inference_engine/samples/cpp
make -j2 object_detection_sample_ssd

在这里插入图片描述

3.使用model Downloader下载预先训练的人脸检测模型或从主机复制它

git clone --depth 1 https://github.com/openvinotoolkit/open_model_zoo
cd open_model_zoo/tools/downloader
python3 -m pip install -r requirements.in
python3 downloader.py --name face-detection-adas-0001

在这里插入图片描述

4.运行示例,指定模型、输入图像的路径和运行Raspbian*操作系统所需的VPU:

./armv7l/Release/object_detection_sample_ssd -m <path_to_model>/face-detection-adas-0001.xml -d MYRIAD -i <path_to_image>

我这里就是

./armv7l/Release/object_detection_sample_ssd -m /home/pi/Desktop/yolov5/build/open_model_zoo/tools/downloader/intel/face-detection-adas-0001/FP16/face-detection-adas-0001.xml -d MYRIAD -i /home/pi/Desktop/yolov5/test01.jpg

在这里插入图片描述

应用程序输出一个图像(out_0.bmp),在build文件夹后面,其中检测到的面用矩形包围。

OK,你已经完成了必需的安装、配置和构建步骤。


晚会我会上传一个Python的使用测试代码上来。欢迎在评论区留言。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值