CNNS for Financial Time Series and Satellite Images 03

本文详细介绍了在《Machine Learning for Algorithmic Trading》一书中关于卷积神经网络(CNN)在处理CIFAR10图像分类任务的应用。首先,文章介绍了CIFAR10数据集,接着展示了如何预处理图像并进行训练-测试拆分。然后,通过训练前馈神经网络和CNN模型,实现了44.22%到67.07%的测试准确率提升。此外,文章还探讨了图像增强技术如何通过创建合成数据来提高模型性能,并简化了AlexNet架构以适应CIFAR10的低维度图像。最后,对比了不同模型的性能和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列文章为《Machine Learning for Algorithmic Trading》第十八章 CNNS for Financial Time Series and Satellite Images 中代码复现。

03 CIFAR10 图像分类

我们将使用 CIFAR10 数据集,该数据集使用 60,000 个 ImageNet 样本,压缩为 32x32 像素分辨率(从原始的 224x224),但仍具有三个颜色通道。 最初的 1,000 个类中只有 10 个。

Imports
在这里插入图片描述下载 CIFAR-10 数据集
在这里插入图片描述可视化前 30 个训练图像
在这里插入图片描述在这里插入图片描述
重新缩放图像
在这里插入图片描述训练-测试拆分
在这里插入图片描述在这里插入图片描述

前馈神经网络 我们首先在 50,000 个训练样本上训练一个两层前馈网络,训练 20 个 epochs,以达到 44.22% 的测试准确率。
我们还用 500K 参数的三层卷积网络进行了实验,测试准确率为 67.07%。

模型架构
在这里插入图片描述编译模型
在这里插入图片描述定义回测
在这里插入图片描述训练模型
在这里插入图片描述绘制CV图
在这里插入图片描述加载产生最佳验证准确度的权重
在这里插入图片描述测试准确性在这里插入图片描述
CNN模型架构
在这里插入图片描述在这里插入图片描述在这里插入图片描述编译模型
在这里插入图片描述定义回测
在这里插入图片描述训练模型
在这里插入图片描述绘制CV图
在这里插入图片描述在这里插入图片描述
评估预测
在这里插入图片描述在这里插入图片描述

带有图像增强的 CNN
提高性能的一个常见技巧是通过创建合成数据人为地增加训练集的大小。 这涉及随机移动或水平翻转图像,或将噪声引入图像。

在这里插入图片描述在这里插入图片描述可视化训练数据的子集

结果显示了增强图像是如何按预期以各种方式改变的

在这里插入图片描述在这里插入图片描述在这里插入图片描述
定义回测
训练增强图像
在这里插入图片描述
CV图
在这里插入图片描述准确性
在这里插入图片描述
AlexNet

我们还需要简化 AlexNet 架构,以应对 CIFAR10 图像相对于竞赛中使用的 ImageNet 样本的较低维度。

模型架构
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
编译模型
定义回测
训练模型(代码参照上文)
CV图
在这里插入图片描述准确性在这里插入图片描述
比较结果
在这里插入图片描述在这里插入图片描述

内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值