CNNS for Financial Time Series and Satellite Images 03

本系列文章为《Machine Learning for Algorithmic Trading》第十八章 CNNS for Financial Time Series and Satellite Images 中代码复现。

03 CIFAR10 图像分类

我们将使用 CIFAR10 数据集,该数据集使用 60,000 个 ImageNet 样本,压缩为 32x32 像素分辨率(从原始的 224x224),但仍具有三个颜色通道。 最初的 1,000 个类中只有 10 个。

Imports
在这里插入图片描述下载 CIFAR-10 数据集
在这里插入图片描述可视化前 30 个训练图像
在这里插入图片描述在这里插入图片描述
重新缩放图像
在这里插入图片描述训练-测试拆分
在这里插入图片描述在这里插入图片描述

前馈神经网络 我们首先在 50,000 个训练样本上训练一个两层前馈网络,训练 20 个 epochs,以达到 44.22% 的测试准确率。
我们还用 500K 参数的三层卷积网络进行了实验,测试准确率为 67.07%。

模型架构
在这里插入图片描述编译模型
在这里插入图片描述定义回测
在这里插入图片描述训练模型
在这里插入图片描述绘制CV图
在这里插入图片描述加载产生最佳验证准确度的权重
在这里插入图片描述测试准确性在这里插入图片描述
CNN模型架构
在这里插入图片描述在这里插入图片描述在这里插入图片描述编译模型
在这里插入图片描述定义回测
在这里插入图片描述训练模型
在这里插入图片描述绘制CV图
在这里插入图片描述在这里插入图片描述
评估预测
在这里插入图片描述在这里插入图片描述

带有图像增强的 CNN
提高性能的一个常见技巧是通过创建合成数据人为地增加训练集的大小。 这涉及随机移动或水平翻转图像,或将噪声引入图像。

在这里插入图片描述在这里插入图片描述可视化训练数据的子集

结果显示了增强图像是如何按预期以各种方式改变的

在这里插入图片描述在这里插入图片描述在这里插入图片描述
定义回测
训练增强图像
在这里插入图片描述
CV图
在这里插入图片描述准确性
在这里插入图片描述
AlexNet

我们还需要简化 AlexNet 架构,以应对 CIFAR10 图像相对于竞赛中使用的 ImageNet 样本的较低维度。

模型架构
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
编译模型
定义回测
训练模型(代码参照上文)
CV图
在这里插入图片描述准确性在这里插入图片描述
比较结果
在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值