目录
概述
朴素贝叶斯法(Naive Bayes Classifier)是基于贝叶斯定理与特征条件独立性假设的分类方法。对于给定的训练集,首先基于特征条件独立假设学习输入输出的联合概率分布(朴素贝叶斯法这种通过学习得到模型的机制,显然属于生成模型);然后基于此模型,对给定的输入 x,利用贝叶斯定理求出后验概率最大的输出 y。
首先 我们先来了解一下部分概念
比如我们已经知道袋子里面有 10 个球,不是黑球就是白球,其中 6个是黑球,那么把手伸进去摸一个球,就能知道摸出黑球的概率是多少。但这种情况往往是上帝视角,即了解了事情的全貌再做判断。
但是 我们事先不知道袋子里黑球和白球的比例 通过我们后面摸出来球的颜色能判断袋子里黑白球的比例吗
先验概率:
通过经验来判断事情发生的概率,比如说“贝叶死”的发病率是万分之一,就是先验概率。
后验概率:
后验概率就是发生结果之后,推测原因的概率。比如说某人查出来了患有“贝叶死”,那么患病的原因可能是 A、B 或 C。**患有“贝叶死”是因为原因 A 的概率就是后验概率。它是属于条件概率的一种。
条件概率:
事件 A 在另外一个事件 B 已经发生条件下的发生概率,表示为 P(A|B)。比如原因 A 的条件下,患有“贝叶死”的概率,就是条件概率。
接下来了解一下机器学习中的判别式模型和生成式模型
在机器学习中,对于有监督学习可以将其分为两类模型:判别式模型和生成式模型。简单地说,判别式模型是针对条件分布建模,而生成式模型则针对联合分布进行建模。
简单来说就是
- 对于判别式模型,只需要学习二者差异即可。比如说好瓜和坏瓜 比如好瓜的藤比坏瓜更绿一些。
- 而生成式模型则不一样,需要学习好瓜的特征是什么样,坏瓜的特征是么样。有了二者的特征以后,再根据各自的特征去区分。
生成式模型:由数据学习联合概率分布P(X,Y), 然后由P(Y|X)=P(X,Y)/P(X)求出概率分布P(Y|X)作为预测的模型。该方法表示了给定输入X与产生输出Y的生成关系
判别式模型:由数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)作为预测模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。
而这次实验所学的贝叶斯就是生成式模型
对每一个类建立一个模型,有多少个类别,就建立多少个模型。比如说类别标签有{好瓜,坏瓜},那首先根据好瓜的特征学习出一个好瓜的模型,再根据坏瓜的特征学习出坏瓜的模型,之后分别计算新样本 跟两个类别的联合概率 ,然后根据贝叶斯公式:
分别计算,选择最大的作为样本的分类
朴素贝叶斯算法原理
贝叶斯公式
在贝叶斯公式中,P(A)称为"先验概率"(Prior probability),即在B事件发生之前,对A事件概率的一个判断。
P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,对A事件概率的重新评估。
<