Mlflow可视化学习笔记(一):可视化YOLOV4损失函数

安装

安装
pip install mlflow
依赖包
pip install mysqlclient
pip install boto3

导包设置uri和关键定义函数

import mlflow
mlflow.set_tracking_uri("http://127.0.0.1:5000") # 进入到这个网址
mlflow.set_experiment("train-trial") # 创建一个train-trial的文件在上面网页中

def log_scalar(name, value, step):
    """Log a scalar value to both MLflow"""
    mlflow.log_metric(name, value)

找到想要可视化的位置

通过log_scalar(name, y, x)来进行操作比如说

for i in range(3):
    sum_loss,loss_conf, loss_cls,loss_loc,num_pos= yolo_loss(outputs[i], targets)
    if Mlflow:
        log_scalar("sum_loss", sum_loss.cpu().detach().numpy().item() / (iteration + 1), epoch)
        log_scalar("loss_conf", loss_conf.cpu().detach().numpy().item() / (iteration + 1), epoch)
        log_scalar("loss_cls", loss_cls.cpu().detach().numpy().item() / (iteration + 1), epoch)
        log_scalar("loss_loc", loss_loc.cpu().detach().numpy().item() / (iteration + 1), epoch)

运行程序前需要先在终端打开mlflow通过mlflow ui可打开
在这里插入图片描述

然后即可运行程序,这时候你进入这个网址就可以看到运行的图!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZY_dl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值