安装
安装
pip install mlflow
依赖包
pip install mysqlclient
pip install boto3
导包设置uri和关键定义函数
import mlflow
mlflow.set_tracking_uri("http://127.0.0.1:5000") # 进入到这个网址
mlflow.set_experiment("train-trial") # 创建一个train-trial的文件在上面网页中
def log_scalar(name, value, step):
"""Log a scalar value to both MLflow"""
mlflow.log_metric(name, value)
找到想要可视化的位置
通过log_scalar(name, y, x)来进行操作比如说
for i in range(3):
sum_loss,loss_conf, loss_cls,loss_loc,num_pos= yolo_loss(outputs[i], targets)
if Mlflow:
log_scalar("sum_loss", sum_loss.cpu().detach().numpy().item() / (iteration + 1), epoch)
log_scalar("loss_conf", loss_conf.cpu().detach().numpy().item() / (iteration + 1), epoch)
log_scalar("loss_cls", loss_cls.cpu().detach().numpy().item() / (iteration + 1), epoch)
log_scalar("loss_loc", loss_loc.cpu().detach().numpy().item() / (iteration + 1), epoch)
运行程序前需要先在终端打开mlflow通过mlflow ui可打开
然后即可运行程序,这时候你进入这个网址就可以看到运行的图!