2023年全国电子设计竞赛E题-运动目标控制与自动追踪系统

1、赛题回顾


在这里插入图片描述


2、方案说明

提供两套设计方案,以下两套方案均以实现:

  • 方案一:openmv+stm32单片机实现系统控制
  • 方案二:openmv实现系统控制

本文以方案二进行说明。

3、硬件说明

本设计使用openmv实现整个系统的控制。

3.1、主控

  • 主控使用openmv
  • openmv识别图像后进行舵机的位置控制

3.2、云台

  • 本系统使用二位云台对激光头进行控制。

3.3、舵机引脚说明

  • 二位云台上有两个舵机,接线颜色与功能如下图所示:

3.4、激光灯

  • 使用任意一款可以IO控制的激光的即可。

4、硬件连接说明

4.1、舵机接线说明

  • X轴的舵机信号线接openmv的P8
  • Y轴舵机信号线接openmv的P7

4.2、按键接线说明

  • 按键1—一头接地一头接P0
  • 按键2—一头接地一头接P1
  • 按键3—一头接地一头接P2
  • 按键4—一头接地一头接P3

5、openmv代码

def draw_rect_min():
    global break0
    while(True):
        s1.angle(13.8+4,3000)#-16.5+4----13+4   原点  逆时针左上角
        s2.angle(16.5*0.66666,3000)#270°舵机要乘以0.66666  +15.5-----  -15.5
        for i in range(40):
            value0 = p_in0.value()
            if value0==0 :
                break0=1
                break
            time.sleep_ms(100)
            print(i)
        if break0==1 :
            break0=0
            break


        s2.angle(-2.79*0.66666,3000)#   控制逆时针第二个点的x坐标
        for i in range(40):
            value0 = p_in0.value()
            if value0==0 :
                break0=1
                break
            time.sleep_ms(100)
            print(i)
        if break0==1 :
            break0=0
            break


        s1.angle(2.5+4,3000)#   控制逆时针第三个点的y坐标
        for i in range(40):
            value0 = p_in0.value()
            if value0==0 :
                break0=1
                break
            time.sleep_ms(100)
            print(i)
        if break0==1 :
            break0=0
            break

        s2.angle(16.5*0.66666,3000)#   控制逆时针第四个点的x坐标

        for i in range(40):
            value0 = p_in0.value()
            if value0==0 :
                break0=1
                break
            time.sleep_ms(100)
            print(i)
        if break0==1 :
            break0=0
            break

6、资料下载

<think>好的,我现在需要处理用户关于2023E使用OpenCV的设计报告或相关资料的问。首先,用户引用了两个站内资料,其中第一个提到了图像预处理和分割的示例代码,第二个是关于计算机毕业设计的汇总。用户可能是在准备毕业设计,需要结合OpenCV的方案。 接下来,我需要分析用户的具体需求。用户明确提到2023E,所以需要确认该目的具体内容。由于目通常每不同,且可能涉及特定应用场景,比如图像识别、目标检测或自动控制等。结合OpenCV的使用,推测E可能涉及计算机视觉方面的任务,比如图像处理、特征提取或实时检测等。 用户需要设计报告、示例或相关资料,因此需要提供相关的技术方向、步骤和可能的参考资料。考虑到的实际情况,可能需要包括硬件选型、算法设计、代码实现以及结果分析等方面。 根据引用[1]中的图像预处理和分割示例代码,可以推荐用户参考这些基础步骤,比如灰度化、滤波、边缘检测等。此外,结合OpenCV的常用功能,如轮廓检测、模板匹配或机器学习模型集成,可能也是设计方案的一部分。 引用[2]提到了毕业设计,可能用户同时在进行毕业设计,因此需要将项目毕设结合,确保资料的相关性和实用性。可能需要指导用户如何将中的OpenCV应用扩展到更复杂的系统中,比如结合深度学习或物联网。 由于资料可能未公开,需要建议用户参考往类似目和官方资源,同时利用开源社区和学术平台获取灵感。此外,提供示例代码结构和关键算法点,帮助用户构建自己的设计方案。 最后,生成相关问,帮助用户进一步探索硬件选型、算法优化和结果验证等方面,确保他们能够全面应对E的挑战。</think>关于2023电子设计E中OpenCV的设计方案,结合图像处理技术需求和站内引用内容,以下是关键方向和技术建议: ### 一、设计方案核心要点 1. **图像预处理** - 采用灰度化、高斯滤波和直方图均衡化提升图像质量 - 示例代码框架: ```python import cv2 img = cv2.imread('input.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (5,5), 0) equalized = cv2.equalizeHist(blur) ``` 2. **特征提取识别** - 使用Canny边缘检测结合Hough变换进行几何特征提取 - 基于轮廓分析的形状匹配方法:$$ \text{匹配度} = \frac{\text{匹配区域面积}}{\text{模板总面积}} $$ 3. **动态目标追踪** - 建议采用光流法或背景差分法 - 结合Kalman滤波提高追踪稳定性[^1] ### 二、参考资源建议 1. 往届优秀作品分析(可参考2021视觉类目实现方案) 2. OpenCV官方文档中关于实时图像处理章节 3. 开源社区GitHub项目(搜索关键词:`electronic design competition opencv`) ### 三、报告结构建议 ```markdown 1. 系统架构设计 - 硬件选型(摄像头模块/处理器型号) - 软件流程图 2. 算法实现细节 - 关键公式:$$ \Delta x = \sum_{i=1}^{n} w_i(x_i - \bar{x}) $$ 3. 测试优化 - 准确率评估指标 - 实时性优化方法 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式基地

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值