邻域粗糙集
距离函数 Δ \Delta Δ–计算两样本之间的"距离"
Δ \Delta Δ为距离函数,其表现形式有:
- 闵可夫斯基距离函数
Δ ( x i , x j ) = [ ∑ l = 1 N ( x l i − x l j ) P ] 1 / P \Delta( x_i , x_j )=\left[ \sum_{l=1}^N\left( x_{li} - x_{lj} \right)^P\right]^{1/P} Δ(xi,xj)=[∑l=1N(xli−xlj)P]1/P
P P P=1时,曼哈顿距离; P P P=2时,欧氏距离
- HEOM;VDM;HVDM;IVDM
称 < U , Δ > <U,\Delta> <U,Δ>为非空度量空间,其中 U U U为论域
样本 x x x的邻域
x ∈ U , δ ⩾ 0 x\in U,\delta\geqslant0 x∈U,δ⩾0,条件属性 C C C
数值属性集: B 1 ⊆ C B_1\subseteq C B1⊆C
符号属性集: B 2 ⊆ C B_2\subseteq C B2⊆C
样本x的邻域
可以定义为:
δ B 1 ( x ) = { x i ∣ Δ B 1 ( x , x i ) ⩽ δ , x i ∈ U } \delta_{B_1}(x)=\{ x_i | \Delta_{B_1}(x,x_i)\leqslant\delta, x_i\in U\} δB1(x)={ xi∣ΔB1(x,xi)⩽δ,xi∈U}
δ B 2 ( x ) = { x i ∣ Δ B 2 ( x , x i ) = 0 , x i ∈ U } \delta_{B_2}(x)=\{ x_i | \Delta_{B_2}(x,x_i)=0, x_i\in U\} δB2(x)={ xi∣ΔB2(x,xi)=0,xi∈U}
δ B 1 ∪