邻域粗糙集的相关定义梳理

邻域粗糙集

距离函数 Δ \Delta Δ–计算两样本之间的"距离"

Δ \Delta Δ为距离函数,其表现形式有:

  • 闵可夫斯基距离函数

Δ ( x i , x j ) = [ ∑ l = 1 N ( x l i − x l j ) P ] 1 / P \Delta( x_i , x_j )=\left[ \sum_{l=1}^N\left( x_{li} - x_{lj} \right)^P\right]^{1/P} Δ(xi,xj)=[l=1N(xlixlj)P]1/P

P P P=1时,曼哈顿距离; P P P=2时,欧氏距离

  • HEOM;VDM;HVDM;IVDM

< U , Δ > <U,\Delta> <U,Δ>为非空度量空间,其中 U U U为论域

样本 x x x的邻域

x ∈ U , δ ⩾ 0 x\in U,\delta\geqslant0 xU,δ0,条件属性 C C C

数值属性集: B 1 ⊆ C B_1\subseteq C B1C

符号属性集: B 2 ⊆ C B_2\subseteq C B2C

样本x的邻域可以定义为:

δ B 1 ( x ) = { x i ∣ Δ B 1 ( x , x i ) ⩽ δ , x i ∈ U } \delta_{B_1}(x)=\{ x_i | \Delta_{B_1}(x,x_i)\leqslant\delta, x_i\in U\} δB1(x)={ xiΔB1(x,xi)δ,xiU}

δ B 2 ( x ) = { x i ∣ Δ B 2 ( x , x i ) = 0 , x i ∈ U } \delta_{B_2}(x)=\{ x_i | \Delta_{B_2}(x,x_i)=0, x_i\in U\} δB2(x)={ xiΔB2(x,xi)=0,xiU}

δ B 1 ∪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值