DSP期末知识点复习

一、IIR滤波器的冲激响应不变法

x a ( t ) ⟶ 理想抽样 x ^ a ( t ) ⟶ 序列化 x a ( n T ) x_a(t)\stackrel{理想抽样}{\longrightarrow}\hat{x}_a(t) \stackrel{序列化}{\longrightarrow}x_a(nT) xa(t)理想抽样x^a(t)序列化xa(nT)

理想抽样信号的拉普拉斯 X ^ a ( s ) \hat{X}_a(s) X^a(s)
X ^ a ( s ) = ∫ − ∞ ∞ ∑ n = − ∞ ∞ x a ( n T ) δ ( t − n T ) e − s t   d t = ∑ n = − ∞ ∞ ∫ − ∞ ∞ x a ( n T ) δ ( t − n T ) e − s t   d t = ∑ − ∞ ∞ x a ( n T ) e − n s T (1) \begin{aligned} \hat{X}_{a}(s) & =\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x_{a}(n T) \delta(t-n T) \mathrm{e}^{-s t} \mathrm{~d} t=\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} x_{a}(n T) \delta(t-n T) \mathrm{e}^{-s t} \mathrm{~d} t \\ & =\sum_{-\infty}^{\infty} x_{a}(n T) \mathrm{e}^{-n s T} \end{aligned}\tag1 X^a(s)=n=xa(nT)δ(tnT)est dt=n=xa(nT)δ(tnT)est dt=xa(nT)ensT(1)

抽样序列 x ( n ) = x a ( n T ) x(n)=x_a(nT) x(n)=xa(nT) z z z变换为
X ( z ) = ∑ − ∞ ∞ x ( n ) z − n (2) X(z)=\sum_{-\infty}^{\infty}x(n)z^{-n}\tag2 X(z)=x(n)zn(2)

由此可以看出,当 z = e s T z=e^{sT} z=esT时,抽样序列的 z z z变换等于其理想抽样信号的拉普拉斯变换。


我们思考滤波器的冲激响应不变法,当 h ( n ) = h a ( n T ) h(n)=h_a(nT) h(n)=ha(nT),我们可以得到如下关系

H ( e j w ) ∣ e j w = z = H ( z ) ∣ z = e s T = H ^ a ( s ) = 1 T ∑ − ∞ ∞ H a ( s − j 2 π T k ) (3) H(e^{jw})|_{e^{jw}=z}=H(z)|_{z=e^{sT}}=\hat{H}_a(s)=\frac{1}{T}\sum_{-\infty}^{\infty}H_a(s-j\frac{2\pi}{T}k)\tag3 H(ejw)ejw=z=H(z)z=esT=H^a(s)=T1Ha(sjT2πk)(3)

根据式 ( 3 ) (3) (3),我们可以得到 s = j w T s=\frac{jw}{T} s=Tjw,所以

H ( e j w ) = 1 T ∑ − ∞ ∞ H a [ j ( w T − 2 π T k ) ] (4) H(e^{jw})=\frac{1}{T}\sum_{-\infty}^{\infty}H_a[j(\frac{w}{T}-\frac{2\pi}{T}k)]\tag4 H(ejw)=T1Ha[j(TwT2πk)](4)

从式 ( 4 ) (4) (4)我们可以发现数字滤波器是模拟滤波器频率响应 H a ( j Ω ) H_a(j\Omega) Ha(jΩ)的以采样频率的延拓。

二、关于频谱分辨率的思考

我们可以知道,对于现实世界中真实的信号做截取,本质上是信号上加窗,我们下面都以最简单的矩形窗举例,不失一般性。

时域上的加窗,频谱上是复卷积 X N ( e j w ) X_N(e^{jw}) XN(ejw)是加窗后的信号频谱。

X N ( e j w ) = 1 2 π ∫ − π π W N ( e j θ ) X ( e j ( w − θ ) ) d θ (5) X_N(e^{jw})=\frac{1}{2\pi}\int_{-\pi}^{\pi}W_N(e^{j\theta}) X(e^{j(w-\theta)})d\theta \tag5 XN(ejw)=2π1ππWN(ejθ)X(ej(wθ))dθ(5)

我们可以假想一下,一个余弦信号的频谱是周期的脉冲 δ T ( t ) \delta_T(t) δT(t),如果经过门函数的卷积后,脉冲势必会变成周期的门函数,那么频谱的分辨率就会下滑。

正在自学Geogebra,学成归来后一定给大家手搓个图!!

通常情况下,我们会定义矩形窗主瓣宽度的一半 2 π / N 2\pi/N 2π/N 作为数字频谱的分辨率,即

Δ ω = 2 π N (6) \Delta \omega=\frac{2\pi}{N}\tag6 Δω=N2π(6)

我们利用数字频率和模拟频率的变换关系式 ( 7 ) (7) (7)

Δ ω = 2 π Δ f f s (7) \Delta \omega=2\pi\frac{\Delta f}{f_s}\tag7 Δω=2πfsΔf(7)

我们可以得到模拟频率的分辨率 F 0 F_0 F0

F 0 = Δ f = f s N = 1 N T = 1 T 0 (8) F_0=\Delta f=\frac{f_s}{N}=\frac{1}{NT}=\frac{1}{T_0}\tag8 F0=Δf=Nfs=NT1=T01(8)

其中, T 0 T_0 T0表示实际的数据长度。

特别要注意到的是,补零不可以提升信号的频谱分辨率,因为实际的矩形窗的主瓣宽度并没有发生变化。只有当实际的数据长度 T 0 T_0 T0变化时,频谱分辨率才能得到改善。

三、关于DFS和DFT位移性质的一点思考

DFS本身是周期序列
DFS ⁡ [ x ~ ( n + m ) ] = W N − m k X ~ ( k ) = e j 2 π N m k X ~ ( k ) (9) \operatorname{DFS}[\tilde{x}(n+m)]=W_{N}^{-m k} \tilde{X}(k)=\mathrm{e}^{\mathrm{j} \frac{2 \pi}{N} m k} \tilde{X}(k)\tag9 DFS[x~(n+m)]=WNmkX~(k)=ejN2πmkX~(k)(9)

这个本身是很好证明的,至于要用一点变量替换和 x ~ ( n ) \tilde{x}(n) x~(n) N N N 为周期的性质就可以证明。我主要是想指出它和类似变换直接的联系。 2 π k / N 2\pi k/N 2πk/N 实际上就是傅里叶变换中的 w w w,我们就会发现DFS的时域唯一性质和傅里叶变换的时域位移性质是一样的。

四、圆周卷积的一些性质

设两个有限长序列 x 1 ( n ) x_1(n) x1(n) x 2 ( n ) x_2(n) x2(n)长度分别为 N 1 N_1 N1点和 N 2 N_2 N2点,则将式 ( 10 ) (10) (10)称为 x 1 ( n ) x_1(n) x1(n) x 2 ( n ) x_2(n) x2(n) L L L点圆周卷积。

y ( n ) = [ ∑ m = 0 L − 1 x 1 ( m ) x 2 ( ( n − m ) ) L ] R L ( n ) = [ ∑ m = 0 L − 1 x 2 ( m ) x 1 ( ( n − m ) ) L ] R L ( n ) , L ⩾ max ⁡ [ N 1 , N 2 ] = x 1 ( n ) L ◯ x 2 ( n ) = x 2 ( n ) L ◯ x 1 ( n ) (10) \begin{aligned} y(n) & =\left[\sum_{m=0}^{L-1} x_{1}(m) x_{2}((n-m))_{L}\right] R_{L}(n) \\ & =\left[\sum_{m=0}^{L-1} x_{2}(m) x_{1}((n-m))_{L}\right] R_{L}(n), \quad L \geqslant \max \left[N_{1}, N_{2}\right] \\ & =x_{1}(n)\textcircled{L} x_{2}(n)=x_{2}(n)\textcircled{L} x_{1}(n) \end{aligned}\tag{10} y(n)=[m=0L1x1(m)x2((nm))L]RL(n)=[m=0L1x2(m)x1((nm))L]RL(n),Lmax[N1,N2]=x1(n)Lx2(n)=x2(n)Lx1(n)(10)
( 10 ) (10) (10)中,必须将 x 2 ( n ) x_2(n) x2(n)变成以 L L L为周期的周期延拓序列,则
x ~ 2 ( n ) = x 2 ( ( n ) ) L = ∑ r = − ∞ ∞ x 2 ( n + r L ) (11) \tilde{x}_{2}(n)=x_{2}((n))_{L}=\sum_{r=-\infty}^{\infty} x_{2}(n+r L)\tag{11} x~2(n)=x2((n))L=r=x2(n+rL)(11)

将此式代入式 ( 10 ) (10) (10),可得

y ( n ) = [ ∑ m = 0 L − 1 x 1 ( m ) ∑ r = − ∞ ∞ x 2 ( n + r L − m ) ] R L ( n ) = [ ∑ r = − ∞ ∞ ∑ m = 0 L − 1 x 1 ( m ) x 2 ( n + r L − m ) ] R L ( n ) = [ ∑ r = − ∞ ∞ y l ( n + r L ) ] R L ( n ) (12) \begin{aligned} y(n) & =\left[\sum_{m=0}^{L-1} x_{1}(m) \sum_{r=-\infty}^{\infty} x_{2}(n+r L-m)\right] \mathrm{R}_{\mathrm{L}}(n) \\ & =\left[\sum_{r=-\infty}^{\infty} \sum_{m=0}^{L-1} x_{1}(m) x_{2}(n+r L-m)\right] \mathrm{R}_{L}(n)\\ &=\left[\sum_{r=-\infty}^{\infty} y_{l}(n+r L)\right] R_{L}(n) \end{aligned}\tag{12} y(n)=[m=0L1x1(m)r=x2(n+rLm)]RL(n)=[r=m=0L1x1(m)x2(n+rLm)]RL(n)=[r=yl(n+rL)]RL(n)(12)

由线性卷积和求圆周卷积和:两序列的线性卷积和 y l ( n ) y_l(n) yl(n) L L L 为周期的周期延拓后混叠相加序列的主值序列,即为此两序列的 L L L 点圆周卷积和 y ( n ) y(n) y(n)

若想用圆周卷积和 y ( n ) y(n) y(n) 求线性卷积和 y l ( n ) y_l(n) yl(n),必须满足 L ⩾ N 1 + N 2 − 1 L\geqslant N_1+N_2-1 LN1+N21

下面我们来介绍一下利用DFT来运算圆周卷积

Y ( k ) = DFT ⁡ [ y ( n ) ] = ∑ n = 0 L − 1 [ ∑ m = 0 L − 1 x 1 ( m ) x 2 ( ( n − m ) ) L R L ( n ) ] W L k n = ∑ m = 0 L − 1 x 1 ( m ) ∑ n = 0 L − 1 x 2 ( ( n − m ) ) L W L k n = ∑ m = 0 L − 1 x 1 ( m ) W L k m X 2 ( k )  (利用圆周移位性)  = X 1 ( k ) X 2 ( k ) \begin{aligned} Y(k) & =\operatorname{DFT}[y(n)]=\sum_{n=0}^{L-1}\left[\sum_{m=0}^{L-1} x_{1}(m) x_{2}((n-m))_{L} R_{L}(n)\right] W_{L}^{k n} \\ & =\sum_{m=0}^{L-1} x_{1}(m) \sum_{n=0}^{L-1} x_{2}((n-m))_{L} W_{L}^{k n} \\ & =\sum_{m=0}^{L-1} x_{1}(m) W_{L}^{k m} X_{2}(k) \quad \text { (利用圆周移位性) } \\ & =X_{1}(k) X_{2}(k) \end{aligned} Y(k)=DFT[y(n)]=n=0L1[m=0L1x1(m)x2((nm))LRL(n)]WLkn=m=0L1x1(m)n=0L1x2((nm))LWLkn=m=0L1x1(m)WLkmX2(k) (利用圆周移位性) =X1(k)X2(k)

其中, X 1 ( k ) = DFT ⁡ [ x 1 ( n ) ] X_{1}(k)=\operatorname{DFT}[x_1(n)] X1(k)=DFT[x1(n)] X 2 ( k ) = DFT ⁡ [ x 2 ( n ) ] X_{2}(k)=\operatorname{DFT}[x_2(n)] X2(k)=DFT[x2(n)]

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

No_one-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值