Low-Complexity Hybrid Precoding in Massive Multiuser MIMO Systems 阅读笔记一

基础知识

a diagonal matrix 为什么可以引入用来做 column power normalization?

对于一个复矩阵,每个元素的模长平方表示该元素的功率。对于一个矩阵 A \mathbf{A} A,每一列的功率可以通过计算该列的模长平方和来得到。因此,如果要进行列功率归一化,需要将每一列的功率都调整为相等,即让每一列的模长平方和相等。

为了实现这一目的,可以将每一列的模长平方和作为对角矩阵的对角线元素,将该对角矩阵与原矩阵进行乘法,从而实现列功率归一化。这个对角矩阵被称为缩放矩阵(Scaling Matrix)或者幅度矩阵(Amplitude Matrix),它是一个对角线元素为每一列的模长平方和的矩阵。

具体来说,对于一个矩阵 A \mathbf{A} A,假设其每一列的模长平方和为 c 1 , c 2 , ⋯   , c N c_1,c_2,\cdots,c_N c1,c2,,cN,则缩放矩阵可以表示为:

Λ = [ 1 c 1 0 ⋯ 0 0 1 c 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 c N ] \mathbf{\Lambda }=\left[\begin{array}{cccc} \frac{1}{\sqrt{c_{1}}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sqrt{c_{2}}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\sqrt{c_{N}}} \end{array}\right] Λ= c1 1000c2 1000cN 1

则对于 A \mathbf{A} A进行列功率归一化的操作可以表示为:

其中 A n o r m \mathbf{A}_{\mathrm{norm}} Anorm 表示归一化后的矩阵, Λ \mathbf{\Lambda} Λ 表示缩放矩阵。因此,可以将缩放矩阵引入到列功率归一化的过程中,以实现将每一列的功率归一化为相等的操作。

波束赋形什么意思?

波束赋形(Beamforming)是一种信号处理技术,它利用多个天线的组合来控制信号的传输方向和形状。波束赋形可以通过改变信号相位和振幅的分布来实现,以便将信号集中在特定的方向或区域中。

参考RS信号?

参考信号(Reference Signal,RS)是一种在无线通信系统中使用的基础信号,用于进行信道估计和调制解调等操作。

在LTE和5G等无线通信系统中,参考信号通常由基站发送,用于对接收端的信道进行估计和补偿。这些参考信号通常包括上行参考信号下行参考信号两种类型。

矩阵的Frobenius范数是什么?

Frobenius 范数,简称F-范数,是一种矩阵范数,记为 ∥ ⋅ ∥ F \|\cdot\|_{F} F

定义:设 A = [ a i j ] m × n A=\left[a_{i j}\right]_{m \times n} A=[aij]m×n,是一个 m × n m\times n m×n 的矩阵,称 ∥ A ∥ F = tr ⁡ ( A T A ) = ∑ i , j a i j 2 \|A\|_{F}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}=\sqrt{\sum_{i, j} a_{i j}^{2}} AF=tr(ATA) =i,jaij2 是矩阵 A A A 的 Frobenius norm。

用矩阵 B B B 近似矩阵 A A A,即 B = arg ⁡ min ⁡ B ∥ A − B ∥ F B=\underset{B}{\arg \min }\|A-B\|_{F} B=BargminABF

Zero Forcing 预编码

根据无线信道的特点,每个接收天线会接收来自所有发射天线的数据。每个天线传输信号所经历的信道可以由信道状态信息( channel state information,CSI) 表示。

因此,无线信道的信道矩阵可以表示为:

H = { h 11 h 12 ⋯ h 1 N h 21 h 22 ⋱ h 2 K ⋮ ⋱ ⋱ ⋮ h K 1 h K 2 ⋯ h K N } \boldsymbol{H}=\left\{\begin{array}{cccc} h_{11} & h_{12} & \cdots & h_{1 N} \\ h_{21} & h_{22} & \ddots & h_{2 K} \\ \vdots & \ddots & \ddots & \vdots \\ h_{K 1} & h_{K 2} & \cdots & h_{K N} \end{array}\right\} H= h11h21hK1h12h22hK2h1Nh2KhKN

y = ρ f H x + n \boldsymbol{y}=\sqrt{\rho_{f}} \boldsymbol{H} \boldsymbol{x}+\boldsymbol{n} y=ρf Hx+n
在这里插入图片描述
式中: ρ f \rho_{f} ρf 是发送功率; n \boldsymbol{n} n 代表加性高斯白噪声。由于用户之间是相互独立的,很难获得其他用户的 CSI,这意味着很难与其他用户协作。但是在基站( base station,BS) 侧可以获得所有通信用户的 CSI。在时分双工( TDD) 系统中,CSI 可以通过 BS 信道估计得到。因此,可以采用预编码技术来抑制 MUI,提高通信系统的性能。

在大规模 MIMO 系统中,大量天线的存在使得 MUI 对通信性能产生影响。ZF 预编码提高了抗干扰性能,从而提高了无线通信的可靠性。

在这里插入图片描述
预编码模型如图 2 所示,待传输信号采用预编码矩阵进行处理。接收器信号如下:
y = ρ f H W Z F s + n \boldsymbol{y}=\sqrt{\rho_{f}} \boldsymbol{H} \boldsymbol{W}_{Z F} \boldsymbol{s}+\boldsymbol{n} y=ρf HWZFs+n

本文方案使用 ZF 预编码来减少 MUI 的影响,ZF 预编码算法使用信道矩阵求逆来消除 MUI。传统的 ZF预编码矩阵 W Z F \boldsymbol{W}_{Z F} WZF 可以表示为:

W Z F = H H ( H H H ) − 1 \boldsymbol{W}_{Z F}=\boldsymbol{H}^{\mathrm{H}}\left(\boldsymbol{H} \boldsymbol{H}^{\mathrm{H}}\right)^{-1} WZF=HH(HHH)1

因此,接收信号可以表示为:

y = s + n \boldsymbol{y}=\boldsymbol{s}+\boldsymbol{n} y=s+n

        %   =============  ZF preocidng, numerical  ================ 
        WtZF = H'*inv(H*H');%H'是Hermitian转置符
        WZF = WtZF*inv(sqrt(diag(diag(WtZF'*WtZF)))); % normalized columns

待传输信号 s s s 通过 ZF 预编码可以降低 MIMO 系统中多用户干扰的影响。其原理是利用已知的 CSI 矩阵,对待发送的数据信号,进行功率补偿,从而抵消无线通信信道衰落和 MUI(multi-user interference,MUI) 造成的传送数据基本畸变。

由于 ZF 预编码过程需要进行矩阵求逆运算,在传统 MIMO 通信系统中,其运算复杂度有限,然而在大规模 MIMO 系统中,由于系统中的基站天线与用户数量快速上升,导致 ZF 预编码中矩阵求逆的复杂性急剧上升,使得大规模 MIMO 系统的计算需求量需求极大。因此,对于大规模 MIMO 系统中的 ZF 预编码来说,低复杂度的预编码方案是必要的。

最后一步是放到自己写的CalRate函数中计算信道频谱效率。

rateZF(isnr) = rateZF(isnr) + CalRate(P/K*eye(K), H, WZF);

复数正态分布

h ∼ C N ( 0 , 1 ) h \sim \mathcal{C} \mathcal{N}(0,1) hCN(0,1)

这个数学表达式表示随机变量 h h h 遵循复数正态分布(Complex Normal Distribution),其均值为 0,方差为 1。让我们逐步解析这个表达式:

  • h h h 是一个随机变量,表示一种随机现象或数量。

  • ∼ \sim 符号表示 “ h h h 服从” 或 “遵循”,即随机变量 h h h 遵循某种分布。

  • C N ( 0 , 1 ) \mathcal{C} \mathcal{N}(0,1) CN(0,1) 表示复数正态分布,其中 C \mathcal{C} C N \mathcal{N} N 分别表示 “复数” 和 “正态”。这是一种概率分布,用于描述复数随机变量的概率密度。括号内的两个参数分别表示该分布的均值和方差:

  • 0 0 0 是均值,表示这个分布的中心位置。在这里,它表示随机变量 h h h 的实部和虚部的期望值都为 0。

  • 1 1 1 是方差,表示这个分布的离散程度。在这里,它表示随机变量 h h h 的实部和虚部的方差都为 0.5。因此,整个表达式表示随机变量 h h h 遵循均值为 0,方差为 1 的复数正态分布。

一、介绍

众所周知,大规模多输入多输出(MIMO)可以通过简化的发射预编码/接收结合设计实现高容量性能。最值得注意的是,简单的线性预编码方案,如迫零(ZF),几乎是最优的,可与大规模MIMO系统中脏纸编码(DPC)等非线性预编码相媲美。然而,为了利用多天线,惯例是修改基带处复数信号的幅度和相位,然后在通过数字模拟(D/A)转换器、混频器和功率放大器(通常称为射频RF链路)后,将处理后的信号向上转换到载波频率附近。射频链的输出需要与天线元件耦合,也就是说,每个天线元件都需要由专用的射频链支持。由于天线单元数量庞大,这在大规模MIMO系统中实施实际上过于昂贵。

本文受[6]启发,考虑射频链的实际约束,提出通过提取下行聚合信道的共轭转置相位来设计射频预编码器,以获取大规模MIMO系统中的巨大阵列增益。然后,基于射频预编码器与实际信道矩阵乘积得到的等效信道进行低维基带ZF预编码。这种混合预编码方案,称为 PZF,被证明在大规模多用户MIMO场景中接近几乎最优但实际上不可实现的全复杂度ZF预编码的性能。

二、系统模型

我们考虑安排 K K K 个单天线用户,每个用户都支持单流传输。 W \mathbf{W} W K × K K\times K K×K,是baseband的预编码; F \mathbf{F} F N t × K N_t\times K Nt×K,是RF的预编码。基带precoder W \mathbf{W} W 可以调节幅度和相位,而 RF precoder F \mathbf{F} F 只可以通过可变相移器(variable phase shifters)和合成器(combiners)调节phase。 F \mathbf{F} F 中每一个元素都被归一化,满足条件 ∣ F i , j ∣ = 1 N t \left|\mathbf{F}_{i, j}\right|=\frac{1}{\sqrt{N_{t}}} Fi,j=Nt 1,其中 ∣ F i , j ∣ \left|\mathbf{F}_{i, j}\right| Fi,j 表示 F \mathbf{F} F ( i , j ) (i,j) (i,j)th 元素的幅值。

我们采用窄带平坦衰落信道,得到在第 k k k 个用户处接收的采样基带信号:

y k = h k H F W s + n k (1) y_{k}=\mathbf{h}_{k}^{H} \mathbf{F W} \mathbf{s}+n_{k}\tag1 yk=hkHFWs+nk(1)

h k H \mathbf{h}_{k}^{H} hkH 是从BS到第 k k k 个用户的下行信道。 s ∈ C K × 1 \mathbf{s} \in \mathbb{C}^{K \times 1} sCK×1 表示总共 k k k 个用户的信号向量,满足条件 E [ s s H ] = P K I K \mathbf{E}\left[\mathbf{s s}^{H}\right]=\frac{P}{K} \mathbf{I}_{K} E[ssH]=KPIK,其中 P P P 是基站处的总的传输功率, E [ ⋅ ] \mathbb{E}[\cdot] E[] 表示数学期望操作符。为了进一步满足传输功率限制,我们将 W \mathbf{W} W 归一化以满足 ∥ F W ∥ F 2 = K \|\mathbf{F} \mathbf{W}\|_{F}^{2}=K FWF2=K n k n_{k} nk 表示附加的圆对称高斯分布白噪声,具有单位方差,即 n k ∼ C N ( 0 , 1 ) n_{k} \sim \mathcal{C} \mathcal{N}(0,1) nkCN(0,1)

接收端处的第 k k k 个用户的信干比可以用下面的公式表示:

SINR ⁡ k = P K ∣ h k H F w k ∣ 2 1 + ∑ j ≠ k P K ∣ h k H F w j ∣ 2 (2) \operatorname{SINR}_{k}=\frac{\frac{P}{K}\left|\mathbf{h}_{k}^{H} \mathbf{F} \mathbf{w}_{k}\right|^{2}}{1+\sum_{j \neq k} \frac{P}{K}\left|\mathbf{h}_{k}^{H} \mathbf{F} \mathbf{w}_{j}\right|^{2}}\tag2 SINRk=1+j=kKP hkHFwj 2KP hkHFwk 2(2)

其中, w j \mathbf{w}_{j} wj 表示 W \mathbf{W} W 矩阵的第 j j j 列。如果高斯输入信号被使用,系统可以实现的长期平均频谱效率为:

R = ∑ k = 1 K E [ log ⁡ 2 ( 1 + S I N R k ) ] (3) R=\sum_{k=1}^{K} \mathbb{E}\left[\log _{2}\left(1+\mathrm{SINR}_{k}\right)\right]\tag3 R=k=1KE[log2(1+SINRk)](3)

三、Massive MIMO系统中的混合预编码

在大规模MIMO系统中,由于丰富散射环境[2]中用户信道的渐近正交性,ZF预编码被认为是一种重要的的线性预编码方案,可以实现几乎最优的容量性能。它通常通过基带处理实现,需要 N t N_t Nt 个 RF 链执行RF-基带频率转换和A/D转换。然而,这种巨大的硬件需求限制了阵列尺寸的扩大。

为了减轻硬件限制,同时充分发挥大规模多用户MIMO系统的潜力,我们计划只使用相位调制将 K K K 个 RF 链路结果和 N t N_t Nt 个传输天线耦合起来,使用便宜的 RF 相移器。然后在基带执行低维度多用户流处理,以管理用户间干扰。所提出的低复杂度混合预编码方案,称为phased-ZF (PZF),可以接近全复杂度 ZF 预编码的性能,如前所述,全复杂度 ZF 预编码实际上是不可实现的,因为需要用专用的射频链支持每个天线。接下来我们分析了所提出的 PZF 方案可以实现的频谱效率。

3.1 混合预编码设计

用图1所示的结构来执行所提出的混合基带和RF联合处理,其中基带预编码器W修改传入的复数符号的幅度和相位,RF预编码器F控制上转换的RF信号的相位。我们建议,通过提取从BS到多个用户的聚合下行信道的共轭转置的相位,在RF域进行纯相位控制。这是为了对齐信道元素的相位,从而可以获得大规模MIMO系统中过量天线所提供的巨大的阵列增益。

为了解释清楚, F i , j \mathbf{F}_{i, j} Fi,j 表示为 ( i , j ) (i, j) (i,j)th element of F \mathbf{F} F

F i , j = 1 N t e j φ i , j (4) \mathbf{F}_{i, j}=\frac{1}{\sqrt{N_{t}}} e^{j \varphi_{i, j}}\tag4 Fi,j=Nt 1ejφi,j(4)

φ i , j \varphi_{i, j} φi,j 是下行复合信道的共轭转置矩阵 H H H^H HH 的第 ( i , j ) (i,j) (i,j)th 元素 h i , j h_{i,j} hi,j 的相位。这里我们隐含的假设完美的信道只是在 BS 处可以被获取。

在基带处,我们观察到一个等效的信道 H e q = H F \mathbf{H}_{eq}=\mathbf{HF} Heq=HF ,它是低维 K × K K\times K K×K 的。 H = [ h 1 , ⋯   , h K ] H \mathbf{H}=[\mathbf{h}_1,\cdots,\mathbf{h}_K]^H H=[h1,,hK]H 是下行复合链路。 因此可以对 H e q \mathbf{H}_{eq} Heq 可以进行多流基带预编码,其中简单的低维度 ZF precoding 可以表示为:
W = H e q H ( H e q H e q H ) − 1 Λ (5) \mathbf{W}=\mathbf{H}_{e q}^{H}\left(\mathbf{H}_{e q} \mathbf{H}_{e q}^{H}\right)^{-1} \mathbf{\Lambda}\tag5 W=HeqH(HeqHeqH)1Λ(5)

其中, Λ \mathbf{\Lambda} Λ 是一个对角矩阵,为了列功率归一化而引入。使用这种 PZF 方案,为了支持 K K K 个流的同时传输,硬件复杂度大大降低,其中只需要 K K K 个 RF链,而全复杂度的ZF预编码所需的 N t N_t Nt

量化 RF 相位控制:根据(4),RF预编码器 F \mathbf{F} F 的每个元素被假定是可以相位连续变化的。然而,在实际实现中,由于可变移相器的实际约束,每个入口的相位往往会被严重量化。因此,我们需要研究我们提出的 PZF 预编码方案在这种现实场景中的性能,即 F \mathbf{F} F K N t KN_t KNt 元素的相位被量化到 B B B 比特的精度,每个元素都被量化到最近邻的位置根据最小的欧式距离。因此, F \mathbf{F} F 的每个元素的相位可以被写成 φ ^ = ( 2 π n ^ ) / ( 2 B ) \hat{\varphi}=(2 \pi \hat{n}) /\left(2^{B}\right) φ^=(2πn^)/(2B),其中 n ^ \hat{n} n^ 是根据下式选择的:
n ^ = arg ⁡ min ⁡ n ∈ { 0 , ⋯   , 2 B − 1 } ∣ φ − 2 π n 2 B ∣ \hat{n}=\arg \min _{n \in\left\{0, \cdots, 2^{B}-1\right\}}\left|\varphi-\frac{2 \pi n}{2^{B}}\right| n^=argn{0,,2B1}min φ2B2πn

其中, φ \varphi φ 是从式(4)获得的,未经过量化的相位。接下来,基带的预编码需要通过(5)式和量化的 F \mathbf{F} F 来计算。

MATLAB代码中是Quant函数计算的这个量化过程。

function r = Quant(B, W)
delta = 2*pi/2^B; % quantization interval
r = zeros(size(W, 1), size(W, 2));% ininitialize quantized matrix

for i1 = 1 : size(W, 1)
    for i2 = 1 : size(W, 2)
        ph = angle(W(i1, i2)); % ph in [-pi, pi]
        phq = floor(ph/delta)*delta +(mod(ph, delta) > delta/2)*delta ;% quantized phase
        r(i1, i2) = exp(1j*phq);
    end
end
r = 1/sqrt(size(W, 1)) * r;
end

3.2 锐利衰减信道中的频谱效率分析

在这一部分,我们分析了我们提出的 PZF 预编码和全复杂度 ZF 预编码在大规模发射天线数量为 N t N_t Nt ,假设信道为 Rayleigh 衰弱的情况下的频谱效率。闭式表达式被推导了出来,揭示了不同参数对系统容量的影响。

f k \mathbf{f}_{k} fk 表示矩阵 F \mathbf{F} F 的第 k 列。

y k = [ h k H f 1 , ⋯   , h k H f k , ⋯   , h K H f K ] W s + n k (7) y_{k}=\left[\mathbf{h}_{k}^{H} \mathbf{f}_{1}, \cdots, \mathbf{h}_{k}^{H} \mathbf{f}_{k}, \cdots, \mathbf{h}_{K}^{H} \mathbf{f}_{K}\right] \mathbf{W s}+n_{k}\tag7 yk=[hkHf1,,hkHfk,,hKHfK]Ws+nk(7)

对角项

如第三节所述, f k \mathbf{f}_k fk 是通过提取 h k \mathbf{h}_k hk 的相位得到的。对于对角项,我们有

h k H f k = 1 N t ∑ i = 1 N t ∣ h i , k ∣ (8) \mathbf{h}_{k}^{H} \mathbf{f}_{k}=\frac{1}{\sqrt{N_{t}}} \sum_{i=1}^{N_{t}}\left|h_{i, k}\right|\tag8 hkHfk=Nt 1i=1Nthi,k(8)

h i , k h_{i, k} hi,k 是 信道矩阵共轭转置矩阵 H H = [ h 1 , ⋯   , h K ] \mathbf{H}^H=[\mathbf{h}_1,\cdots,\mathbf{h}_K] HH=[h1,,hK] 的第 ( i , k ) (i,k) (i,k)th 元素。同时也是向量 h k \mathbf{h}_{k} hk 的第 i i i 个元素。假设每个 h k \mathbf{h}_k hk中的元素都是独立同分布的 (independent and identically distributed,i.i.d.)高斯随机变量,有着单位方差和零均值,i.e., h ∼ C N ( 0 , 1 ) h \sim \mathcal{C} \mathcal{N}(0,1) hCN(0,1)。我们可以知道 ∣ h ∣ |h| h 是服从 Rayleigh 分布并且均值为 π 2 \frac{\sqrt{\pi}}{2} 2π ,方差为 1 − π / 4 1-\pi/4 1π/4。当 N t N_t Nt 接近于无穷时,根据中心极限定理我们知道

h k H f k ∼ N ( π N t 2 , 1 − π 4 ) (9) \mathbf{h}_{k}^{H} \mathbf{f}_{k} \sim \mathcal{N}\left(\frac{\sqrt{\pi N_{t}}}{2}, 1-\frac{\pi}{4}\right)\tag9 hkHfkN(2πNt ,14π)(9)

非对角项

对于非对角项,i.e., j ≠ k j \neq k j=k,我们有 h k H f j = 1 N t ∑ i = 1 N t h i , k ∗ e j φ i , j \mathbf{h}_{k}^{H} \mathbf{f}_{j} =\frac{1}{\sqrt{N_{t}}} \sum_{i=1}^{N_{t}} h_{i, k}^{*} e^{j \varphi_{i, j}} hkHfj=Nt 1i=1Nthi,kejφi,j。它的分布我们在下面的定理给出。

Lemma 1:在锐利衰弱信道中,非对角线项
h k H f j ∼ C N ( 0 , 1 ) \mathbf{h}_{k}^{H} \mathbf{f}_{j} \sim \mathcal{C N}(0,1) hkHfjCN(0,1)

通过 Lemma 1 我们可以分析出,非对角线项 ∣ h k H f j ∣ \left|\mathbf{h}_{k}^{H} \mathbf{f}_{j}\right| hkHfj 的幅度服从均值为 π 2 \frac{\sqrt{\pi}}{2} 2π ,方差为 1 − π 4 1-\frac{\pi}{4} 14π 的锐利分布。根据同式(9)给出对角线项 h k H f k \mathbf{h}_{k}^{H} \mathbf{f}_{k} hkHfk 进行对比,可以证明,即使没有baseband processing,在大的天线数量 N t N_t Nt 的情况下,the inter-user interference is essentially negligible!因为此时等效的信道矩阵一个等效的信道 H e q = H F \mathbf{H}_{eq}=\mathbf{HF} Heq=HF 接近单位阵。对角线上的值非常大。

然而,我们注意到当 N t N_t Nt 取中等偏大的值的时候,用户间的串扰仍然可能恶化系统性能。因此我们需要使用我们提出的基带 precoding 方案。

备注1:考虑到当 N t N_t Nt 非常大的时候,非对角向 h k H f j \mathbf{h}_{k}^{H} \mathbf{f}_{j} hkHfj 是基本上可以忽略掉的,我们预计推导出的闭式表达式上界在大天线的系统中会是非常紧的。这进一步证实了图2中的仿真结果。因此,闭式表达式上界在较大值 N t N_t Nt 的情况下,采用 PZF 预编码方案下频谱效率的非常好的估计。

我们可以推理出,即使在信道进行 ZF 预编码消除用户间干扰,我们得到的频谱效率仍然要比非对角线项 h k H f j \mathbf{h}_{k}^{H} \mathbf{f}_{j} hkHfj 全都是0要低。换句话说, h k H f j \mathbf{h}_{k}^{H} \mathbf{f}_{j} hkHfj 全为0的情况,就是PZF预编码方案的频谱效率上界,即 K R K \mathcal{R} KR,其中 R = E [ log ⁡ 2 ( 1 + P K ∣ h k H f k ∣ 2 ) ] \mathcal{R}=\mathbb{E}\left[\log _{2}\left(1+\frac{P}{K}\left|\mathbf{h}_{k}^{H} \mathbf{f}_{k}\right|^{2}\right)\right] R=E[log2(1+KP hkHfk 2)]

R = E [ log ⁡ 2 ( 1 + P K ( y + π N t 2 ) 2 ) ] = log ⁡ 2 ( 1 + π 4 P N t K ) + E [ log ⁡ 2 ( 1 + P K ( y + π N t 2 ) 2 1 + π N t 4 P K ) ] ⏟ Δ \begin{aligned} \mathcal{R} &=\mathbb{E}\left[\log _{2}\left(1+\frac{P}{K}\left(y+\frac{\sqrt{\pi N_{t}}}{2}\right)^{2}\right)\right] \\ &=\log _{2}\left(1+\frac{\pi}{4} \frac{P N_{t}}{K}\right)+\underbrace{\mathbb{E}\left[\log _{2}\left(\frac{1+\frac{P}{K}\left(y+\frac{\sqrt{\pi N_{t}}}{2}\right)^{2}}{1+\frac{\pi N_{t}}{4} \frac{P}{K}}\right)\right]}_{\Delta} \end{aligned} R=E[log2(1+KP(y+2πNt )2)]=log2(1+4πKPNt)+Δ E log2 1+4πNtKP1+KP(y+2πNt )2

其中 y ∼ N ( 0 , σ 2 ) y \sim \mathcal{N}\left(0, \sigma^{2}\right) yN(0,σ2) σ = 1 − π 4 \sigma=\sqrt{1-\frac{\pi}{4}} σ=14π 。我们可以通过证明 Δ \Delta Δ 的上下界都是0来证明 lim ⁡ N t → ∞ Δ = 0 \lim _{N_{t} \rightarrow \infty} \Delta=0 limNtΔ=0

对于第 k k k 个用户流来说,全复杂度的 ZF 预编码向量(具有单位范数)将 h k \mathbf{h}_k hk 投影到 H ~ k = [ h 1 , ⋯   , h k − 1 , h k + 1 , ⋯   , h K ] H \tilde{\mathbf{H}}_{k}=\left[\mathbf{h}_{1}, \cdots, \mathbf{h}_{k-1}, \mathbf{h}_{k+1}, \cdots, \mathbf{h}_{K}\right]^{H} H~k=[h1,,hk1,hk+1,,hK]H 的零空间中。在频谱效率分析中,我们利用了大规模用户MIMO系统中用户信道的渐进正交性。它表明:全复杂度的 ZF 预编码收敛到共轭的波束成形,用户间的干扰被消除到 0,可以实现 SINR ⁡ k → P K ∣ h k ∣ 2 \operatorname{SINR}_{k} \rightarrow \frac{P}{K}\left|\mathbf{h}_{k}\right|^{2} SINRkKPhk2,当 N t → ∞ N_{t} \rightarrow \infty Nt。因此根据式(3),我们得到了全复杂度ZF预编码在大 N t N_{t} Nt 限制下的频谱效率为

R F C − Z F → K E [ log ⁡ 2 ( 1 + P K ∣ h k ∣ 2 ) ] = K e K P log ⁡ 2 e ∑ n = 1 N t E n ( K P ) (11) \begin{aligned} R_{\mathrm{FC}-\mathrm{ZF}} & \rightarrow K \mathbb{E}\left[\log _{2}\left(1+\frac{P}{K}\left|\mathbf{h}_{k}\right|^{2}\right)\right] \\ & =K e^{\frac{K}{P}} \log _{2} e \sum_{n=1}^{N_{t}} E_{n}\left(\frac{K}{P}\right) \end{aligned}\tag{11} RFCZFKE[log2(1+KPhk2)]=KePKlog2en=1NtEn(PK)(11)

其中 ∣ h k ∣ 2 |\mathbf{h}_{k}|^{2} hk2 服从自由度为 2 N t 2N_t 2Nt 的卡方分布, E n ( x ) E_{n}(x) En(x) n n n 阶的指数积分。

E n ( x ) = ∫ 1 ∞ e − x t t n d t E_{n}(x)=\int_{1}^{\infty} \frac{e^{-x t}}{t^{n}} d t En(x)=1tnextdt

E n ( z ) = ( − z ) n − 1 ( n − 1 ) ! E 1 ( z ) + e − z ( n − 1 ) ! ∑ k = 0 n − 2 ( n − k − 2 ) ! ( − z ) k E_{n}(z)=\frac{(-z)^{n-1}}{(n-1) !} E_{1}(z)+\frac{\mathrm{e}^{-z}}{(n-1) !} \sum_{k=0}^{n-2}(n-k-2) !(-z)^{k} En(z)=(n1)!(z)n1E1(z)+(n1)!ezk=0n2(nk2)!(z)k

function r = expintn_noMaple(x, n)

if n >= 2% Calculation using series expansion
    sum = 0;
    for m = 0 : (n-2)
        sum = sum + (-1)^m*factorial(m)/x^(m+1);
    end

    minuend = x^(n-1) * (-1)^(n+1)/factorial(n-1) * expint(x);
    subtractor = x^(n-1) * (-1)^(n+1)/factorial(n-1) * exp(-x) * sum;
    r = minuend - subtractor;
else % Calculation using built-in expint function
    r = expint(x);
end

lim ⁡ N t → ∞ Δ ≥ lim ⁡ a → ∞ E [ log ⁡ 2 ( 1 + y a ) 2 ] + lim ⁡ a → ∞ log ⁡ 2 a 2 1 ρ + a 2 = ( a ) lim ⁡ a → ∞ 2 a log ⁡ 2 e 2 π σ ∫ 0 + ∞ ( ln ⁡ x ) e − a 2 ( x − 1 ) 2 2 σ 2 ( 1 + e − 2 a 2 x σ 2 ) d x ≥ ( b ) lim ⁡ a → ∞ 2 a log ⁡ 2 e 2 π σ ( 1 + e − 2 a 2 ξ σ 2 ) ∫ 0 1 ( ln ⁡ x ) e − a 2 ( x − 1 ) 2 2 σ 2 d x = ( c ) lim ⁡ a → ∞ 2 a e − a 2 2 σ 2 2 π σ ln ⁡ 2 ( 1 + e − 2 a 2 ξ σ 2 ) ∫ 0 1 ( ln ⁡ x ) e a 2 x 2 σ 2 d x ≥ ( d ) lim ⁡ a → ∞ 2 a e − a 2 2 σ 2 2 π σ ln ⁡ 2 ( 1 + e 2 a 2 ξ σ 2 ) 2 σ 2 ( 1 − e a 2 2 σ 2 ) 2 = 0 \begin{array}{l} \lim _{N_{t \rightarrow \infty}} \Delta \geq \lim _{a \rightarrow \infty} \mathbb{E}\left[\log _{2}\left(1+\frac{y}{a}\right)^{2}\right]+\lim _{a \rightarrow \infty} \log _{2} \frac{a^{2}}{\frac{1}{\rho}+a^{2}} \\ \stackrel{(a)}{=}\lim _{a \rightarrow \infty} \frac{2 a \log _{2} e}{\sqrt{2 \pi} \sigma} \int_{0}^{+\infty}(\ln x) e^{-\frac{a^{2}(x-1)^{2}}{2 \sigma^{2}}}\left(1+e^{-\frac{2 a^{2} x}{\sigma^{2}}}\right)d x \\ \stackrel{(b)}{\geq} \lim _{a \rightarrow \infty} \frac{2 a \log _{2} e}{\sqrt{2 \pi} \sigma}\left(1+e^{-\frac{2 a^{2} \xi}{\sigma^{2}}}\right) \int_{0}^{1}(\ln x) e^{-\frac{a^{2}(x-1)^{2}}{2 \sigma^{2}}}d x \\ \stackrel{(c)}{=}\lim _{a \rightarrow \infty} \frac{2 a e^{-\frac{a^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \sigma \ln 2}\left(1+e^{-\frac{2 a^{2} \xi}{\sigma^{2}}}\right) \int_{0}^{1}(\ln x) e^{\frac{a^{2} x}{2\sigma^{2}}}d x \\ \stackrel{(d)}{\geq} \lim _{a \rightarrow \infty} \frac{2 a e^{-\frac{a^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \sigma \ln 2}\left(1+e^{\frac{2 a^{2} \xi}{\sigma^{2}}}\right) \frac{2 \sigma^{2}\left(1-e^{\frac{a^{2}}{2 \sigma^{2}}}\right)}{2}=0 \end{array} limNtΔlimaE[log2(1+ay)2]+limalog2ρ1+a2a2=(a)lima2π σ2alog2e0+(lnx)e2σ2a2(x1)2(1+eσ22a2x)dx(b)lima2π σ2alog2e(1+eσ22a2ξ)01(lnx)e2σ2a2(x1)2dx=(c)lima2π σln22ae2σ2a2(1+eσ22a2ξ)01(lnx)e2σ2a2xdx(d)lima2π σln22ae2σ2a2(1+eσ22a2ξ)22σ2(1e2σ2a2)=0

lim ⁡ N t → ∞ Δ ≥ ( d ) lim ⁡ a → ∞ 2 a 2 π σ ln ⁡ 2 ( 1 + e − 2 a 2 ξ σ 2 ) e − a 2 ( ξ 2 − 2 ξ ) 2 σ 2 ∫ 0 1 ( ln ⁡ x ) d x = lim ⁡ a → ∞ 2 a 2 π σ ln ⁡ 2 e − a 2 ( ξ − 1 ) 2 2 σ 2 ∫ 0 1 ( ln ⁡ x ) d x = lim ⁡ a → ∞ − 2 a 2 π σ ln ⁡ 2 e − a 2 ( ξ 2 − 2 ξ ) 2 σ 2 = 0 \begin{array}{l} \lim _{N_{t \rightarrow \infty}} \Delta \stackrel{(d)}{\geq}\lim _{a \rightarrow \infty} \frac{2 a }{\sqrt{2 \pi} \sigma \ln 2}\left(1+e^{-\frac{2 a^{2} \xi}{\sigma^{2}}}\right) e^{-\frac{a^{2}( \xi^2-2\xi)}{2\sigma^{2}}}\int_{0}^{1}(\ln x) d x\\ =\lim _{a \rightarrow \infty}\frac{2 a }{\sqrt{2 \pi} \sigma \ln 2}e^{-\frac{a^{2}( \xi-1)^2}{2\sigma^{2}}}\int_{0}^{1}(\ln x) d x \\ =\lim _{a \rightarrow \infty}-\frac{2 a }{\sqrt{2 \pi} \sigma \ln 2}e^{-\frac{a^{2}( \xi^2-2\xi)}{2\sigma^{2}}}\\ =0 \end{array} limNtΔ(d)lima2π σln22a(1+eσ22a2ξ)e2σ2a2(ξ22ξ)01(lnx)dx=lima2π σln22ae2σ2a2(ξ1)201(lnx)dx=lima2π σln22ae2σ2a2(ξ22ξ)=0

lim ⁡ N t → ∞ Δ ≥ lim ⁡ a → ∞ E [ log ⁡ 2 ( 1 + y a ) 2 ] + lim ⁡ a → ∞ log ⁡ 2 a 2 1 ρ + a 2 = lim ⁡ a → ∞ E [ log ⁡ 2 ( 1 + y a ) 2 ] = lim ⁡ a → ∞ 1 2 π σ ∫ − ∞ ∞ log ⁡ 2 ( 1 + y a ) 2 e − y 2 2 σ 2   d y = lim ⁡ a → ∞ 1 2 π σ ∫ − ∞ ∞ log ⁡ 2 x 2 e − ( a ( x − 1 ) ) 2 2 σ 2 a   d x , x = 1 + y a = lim ⁡ a → ∞ 2 a ln ⁡ 2 ⋅ 2 π σ ( ∫ 0 ∞ ln ⁡ x e − a 2 ( x − 1 ) 2 2 σ 2   d x + ∫ − ∞ 0 ln ⁡ ( − x ) e − a 2 ( x − 1 ) 2 2 σ 2   d x ) = lim ⁡ a → ∞ 2 a ln ⁡ 2 ⋅ 2 π σ ( ∫ 0 ∞ ln ⁡ x e − a 2 ( x − 1 ) 2 2 σ 2   d x + ∫ 0 ∞ ln ⁡ x e − a 2 ( x + 1 ) 2 2 σ 2   d x ) = lim ⁡ a → ∞ 2 a log ⁡ 2 e 2 π σ ( ∫ 0 ∞ ln ⁡ x e − a 2 ( x − 1 ) 2 2 σ 2 ( 1 + e − a 2 4 x 2 σ 2 ) d x ) = lim ⁡ a → ∞ 2 a log ⁡ 2 e 2 π σ ( ∫ 0 ∞ ln ⁡ x e − a 2 ( x − 1 ) 2 2 σ 2 ( 1 + e − 2 a 2 x σ 2 ) d x ) \begin{aligned} \lim _{N_{t} \rightarrow \infty} \Delta & \geq \lim _{a \rightarrow \infty} \mathbb{E}\left[\log _{2}\left(1+\frac{y}{a}\right)^{2}\right]+\lim _{a \rightarrow \infty} \log _{2} \frac{a^{2}}{\frac{1}{\rho}+a^{2}} \\ & =\lim _{a \rightarrow \infty} \mathbb{E}\left[\log _{2}\left(1+\frac{y}{a}\right)^{2}\right]=\lim _{a \rightarrow \infty} \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \log _{2}\left(1+\frac{y}{a}\right)^{2} e^{-\frac{y^{2}}{2 \sigma^{2}}} \mathrm{~d} y \\ & =\lim _{a \rightarrow \infty}\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \log _{2} x^{2} e^{-\frac{(a(x-1))^{2}}{2 \sigma^{2}}} a \mathrm{~d} x, x=1+\frac{y}{a} \\ & =\lim _{a \rightarrow \infty} \frac{2 a}{\ln 2 \cdot \sqrt{2 \pi} \sigma}\left(\int_{0}^{\infty} \ln x e^{-\frac{a^{2}(x-1)^{2}}{2 \sigma^{2}}} \mathrm{~d} x+\int_{-\infty}^{0} \ln (-x) e^{-\frac{a^{2}(x-1)^{2}}{2 \sigma^{2}}} \mathrm{~d} x\right) \\ & =\lim _{a \rightarrow \infty} \frac{2 a}{\ln 2 \cdot \sqrt{2 \pi} \sigma}\left(\int_{0}^{\infty} \ln x e^{-\frac{a^{2}(x-1)^{2}}{2 \sigma^{2}}} \mathrm{~d} x+\int_{0}^{\infty} \ln x e^{-\frac{a^{2}(x+1)^{2}}{2 \sigma^{2}}} \mathrm{~d} x\right) \\ & =\lim _{a \rightarrow \infty} \frac{2 a \log _{2} e}{\sqrt{2 \pi} \sigma}\left(\int_{0}^{\infty} \ln x e^{-\frac{a^{2}(x-1)^{2}}{2 \sigma^{2}}}\left(1+e^{-\frac{a^{2} 4 x}{2 \sigma^{2}}}\right) \mathrm{d} x\right) \\ & =\lim _{a \rightarrow \infty} \frac{2 a \log _{2} e}{\sqrt{2 \pi} \sigma}\left(\int_{0}^{\infty} \ln x e^{-\frac{a^{2}(x-1)^{2}}{2 \sigma^{2}}}\left(1+e^{-\frac{2 a^{2} x}{\sigma^{2}}}\right) \mathrm{d} x\right) \end{aligned} NtlimΔalimE[log2(1+ay)2]+alimlog2ρ1+a2a2=alimE[log2(1+ay)2]=alim2π σ1log2(1+ay)2e2σ2y2 dy=alim2π σ1log2x2e2σ2(a(x1))2a dx,x=1+ay=alimln22π σ2a(0lnxe2σ2a2(x1)2 dx+0ln(x)e2σ2a2(x1)2 dx)=alimln22π σ2a(0lnxe2σ2a2(x1)2 dx+0lnxe2σ2a2(x+1)2 dx)=alim2π σ2alog2e(0lnxe2σ2a2(x1)2(1+e2σ2a24x)dx)=alim2π σ2alog2e(0lnxe2σ2a2(x1)2(1+eσ22a2x)dx)

lim ⁡ N t → ∞ R log ⁡ 2 ( 1 + π 4 P N t K ) = 1 \lim _{N_{t} \rightarrow \infty} \frac{\mathcal{R}}{\log _{2}\left(1+\frac{\pi}{4} \frac{P N_{t}}{K}\right)}=1 Ntlimlog2(1+4πKPNt)R=1

四、仿真结果

4.1 大型锐利衰减信道

在图2中,我们数值上比较了我们提出的 PZF 预编码方案和全复杂度ZF方案,包括我们方案的量化版本。后者在大阵列体制下被认为是几乎是完美的,但是由于需要 N t N_t Nt 个昂贵的 RF 射频链路,实际上是不可能的。可以观察到,我们提出的 PZF 预编码方案表现适度地接近全复杂度ZF预编码,只有不到 1dB 的损失,但是大大降低了复杂度。至于严重量化后的相位控制,我们发现 2 比特的量化精度,即相位控制在 { 0 , ± π 2 , π } \left\{0, \pm \frac{\pi}{2}, \pi\right\} {0,±2π,π} 中变化,我们提出的方案只遭受到了忽略不计的退化,即小于 1dB.

推导出的频谱效率表达式解析解(10)和(11)也绘制在图2中。我们观察到,在整个信噪比(SNR)范围内,推导出的闭式表达式在刻画所提出的PZF预编码和全复杂度ZF预编码方案式是相当准确的,这为实际的系统设计提供了有效的指导。

4.2 Large mmWave Multiuser Channels

除了理想的锐利衰弱信道,我们提出的 PZF 方案同样适用于 mmWave 通信中(已知只有非常有限的多径分量)。为了捕捉这种糟糕的散射特性,在仿真中,我们使用几何信道模型[8-10]

h k H = N t N p ∑ l = 1 N p α l k a H ( ϕ l k , θ l k ) \mathbf{h}_{k}^{H}=\sqrt{\frac{N_{t}}{N_{p}}} \sum_{l=1}^{N_{p}} \alpha_{l}^{k} \mathbf{a}^{H}\left(\phi_{l}^{k}, \theta_{l}^{k}\right) hkH=NpNt l=1NpαlkaH(ϕlk,θlk)

其中,每个用户我们假设都可以观察到相同数量的传输路径,即 N p N_p Np,被第 k k k 个用户观察到的第 l l l 个路径强度表示为 α l k \alpha_l^k αlk(假设 α l k ∼ C N ( 0 , 1 ) \alpha_{l}^{k} \sim \mathcal{C} \mathcal{N}(0,1) αlkCN(0,1)), ϕ l k ( θ l k ) \phi_{l}^{k}\left(\theta_{l}^{k}\right) ϕlk(θlk) 是随机的方位角和俯仰角,服从在 [ 0 , 2 π ] [0,2 \pi] [0,2π] 上的随机分布。 a ( ϕ l k , θ l k ) \mathbf{a}\left(\phi_{l}^{k}, \theta_{l}^{k}\right) a(ϕlk,θlk) 是只和天线结构有关的阵列相应向量。在这里我们考虑一个等间距分布的天线阵列,它有着简单的阵列相应表达式,根据[9,eq(6)]给出。

我们在图3中比较了我们提出的PZF方案与[10]中提出的波束空间MIMO (B-MIMO)方案。该方案实质上在RF域将流引导到近似最强路径(使用DFT矩阵处理),并基于等效信道执行低维基带ZF预编码。为了公平的比较,还假定BS共有 K K K 条链。B-MIMO方案在视距(LoS)信道中实现了理想的性能,但在非LoS信道中无法捕获稀疏多径分量。

五、结论

在本文中,我们研究了实际射频硬件约束下的大型多用户 MIMO 系统。我们提出用低复杂度的混合 PZF 方案来接近理想但不可行的全复杂度 ZF 预编码。射频处理被设计为以合理的复杂度获得较大的功率增益,然后引入基带预编码器以方便多流处理。其性能已通过闭式表达式表征,并通过计算机仿真在瑞利衰落和低散射毫米波信道中进一步证明。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

No_one-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值