Multiuser Communication Aided by Movable Antenna

II. SYSTEM MODEL AND PROBLEM FORMULATION

如图1所示,BS配置了尺寸为 N = N 1 × N 2 N=N_{1} \times N_{2} N=N1×N2 的均匀平面阵列(uniform planar array,UPA),服务 K K K 个 single-MA UTs,其中 N 1 N_1 N1 N 2 N_2 N2 分别表示水平方向和垂直方向的天线数。我们假设 UTs 的个数不超过BS处天线的个数,即 K ≤ N K≤N KN。对于每个UT k,MA通过柔性电缆连接到RF链,以便它可以在本地区域内移动 C k \mathcal{C}_{k} Ck。建立一个三维(3D)局部坐标系来描述UT k的MA 的位置,记为 u k = [ x k , y k , z k ] T ∈ C k \mathbf{u}_{k}=\left[x_{k}, y_{k}, z_{k}\right]^{\mathrm{T}} \in \mathcal{C}_{k} uk=[xk,yk,zk]TCk 1 ≤ k ≤ K 1 \leq k \leq K 1kK。在不失一般性的前提下,我们假设天线移动的局部区域立方体(cuboid),即 C k = [ x k min ⁡ , x k max ⁡ ] × [ y k min ⁡ , y k max ⁡ ] × [ z k min ⁡ , z k max ⁡ ] , 1 ≤ k ≤ K \mathcal{C}_{k}=\left[x_{k}^{\min }, x_{k}^{\max }\right] \times\left[y_{k}^{\min }, y_{k}^{\max }\right] \times\left[z_{k}^{\min }, z_{k}^{\max }\right], 1 \leq k \leq K Ck=[xkmin,xkmax]×[ykmin,ykmax]×[zkmin,zkmax],1kK。另外,第 n n n 个FPA在BS处的局部坐标记为 v n = [ X n , Y n , Z n ] , 1 ≤ n ≤ N \mathbf{v}_{n}=\left[X_{n}, Y_{n}, Z_{n}\right], 1 \leq n \leq N vn=[Xn,Yn,Zn],1nN

在这里插入图片描述

h k ( u k ) ∈ C N × 1 \mathbf{h}_{k}\left(\mathbf{u}_{k}\right) \in \mathbb{C}^{N \times 1} hk(uk)CN×1 表示BS和UT k k k 之间的信道矢量,它由传播环境和MA的位置 u k \mathbf{u}_{k} uk 决定。我们考虑从 UTs 到BS的上行传输,因此通过MAC接收到的信号可以表示为

y = W H H ( u ~ ) P 1 / 2 s + W H n (1) \mathbf{y}=\mathbf{W}^{\mathrm{H}} \mathbf{H}(\tilde{\mathbf{u}}) \mathbf{P}^{1 / 2} \mathbf{s}+\mathbf{W}^{\mathrm{H}} \mathbf{n}\tag{1} y=WHH(u~)P1/2s+WHn(1)

其中 W = [ w 1 , w 2 , ⋯   , w K ] ∈ C N × K \mathbf{W}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{K}\right] \in \mathbb{C}^{N \times K} W=[w1,w2,,wK]CN×K 是BS处的接收组合矩阵, w k \mathbf{w}_{k} wk 为UT k k k 的组合向量, 1 ≤ k ≤ K 1≤k≤K 1kK H ( u ~ ) = [ h 1 ( u 1 ) , h 2 ( u 2 ) , ⋯   , h K ( u K ) ] ∈ C N × K \mathbf{H}(\tilde{\mathbf{u}})=\left[\mathbf{h}_{1}\left(\mathbf{u}_{1}\right), \mathbf{h}_{2}\left(\mathbf{u}_{2}\right), \cdots, \mathbf{h}_{K}\left(\mathbf{u}_{K}\right)\right] \in \mathbb{C}^{N \times K} H(u~)=[h1(u1),h2(u2),,hK(uK)]CN×K 为所有 UTs 到BS天线阵列的MAC矩阵,其中 u ~ = [ u 1 T , u 2 T , ⋯   , u K T ] T ∈ R 3 K × 1 \tilde{\mathbf{u}}=\left[\mathbf{u}_{1}^{\mathrm{T}}, \mathbf{u}_{2}^{\mathrm{T}}, \cdots, \mathbf{u}_{K}^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{R}^{3 K \times 1} u~=[u1T,u2T,,uKT]TR3K×1 为MA positioning vector。 s = [ s 1 , s 2 , ⋯   , s K ] T ∈ C K × 1 \mathbf{s}=\left[s_{1}, s_{2}, \cdots, s_{K}\right]^{\mathrm{T}} \in \mathbb{C}^{K \times 1} s=[s1,s2,,sK]TCK×1 表示 UTs 的发射信号,其归一化功率,即 E ( s H s ) = I K \mathbb{E}\left(\mathbf{s}^{\mathrm{H}} \mathbf{s}\right)=\mathbf{I}_{K} E(sHs)=IK P 1 / 2 = diag ⁡ { p 1 , p 2 , ⋯   , p K } \mathbf{P}^{1 / 2}=\operatorname{diag}\left\{\sqrt{p}_{1}, \sqrt{p}_{2}, \cdots, \sqrt{p}_{K}\right\} P1/2=diag{p 1,p 2,,p K} 表示功率缩放矩阵,其中第 k k k 个用户的功率为 p k p_k pk

A. 通道模型

本文考虑了慢衰落的窄带信道,并重点研究了一个准静态衰落块。在远场假设下,平面波模型可以形成每个UT的MA区域到BS的UPA的场响应[4]。设Ltk和Lrk,1≤k≤k分别表示从UT k到BS的发射和接收信道路径总数。UT k与BS之间的第j个发射路径的仰角和方位角(AoDs)分别记为θk,jt和ϕk,j t, 1≤j≤Ltk。UT k与BS之间的第i条接收路径的仰角和到达方位角(AoAs)分别记为θk,ir和ϕk,ir,1≤i≤Lrk。为方便起见,我们将虚拟AoDs和AoAs分别定义为ϑtk,j = cos θk,jt cos ϕtk,j, φtk,j = cos θtk,j sin ϕtk,j, ωk,j t= sin θk,jt, 1≤j≤Ltk,以及ϑrk,i = cos θk,ir cos θk,i, φrk,i = cos θk,ir sin ϕrk,i, ωk,ir = sin θk,ir, 1≤i≤Lkr。
记λ为载波波长,得到UT k和BS之间信道的发射和接收场响应矢量(frv)为[4],[5]

式中,1≤k≤k, 1≤n≤n,其中ρtk,j (uk) = xkϑtk,j +ykφtk,j+zkωk,jt,1≤j≤Ltk表示第j个发射信道路径MA位置uk与原点(即UT k处本地坐标系Ok))的信号传播距离之差,表明UT k第j个发射信道路径MA位置uk与Ok的系数相位差为2λπ ρtk,j (uk)。同样,ρrk,i(vn) = Xnϑk,i r+Ynφk,i r+Znωk,ir, 1≤i≤Lkr表示第i个接收信道路径上BS天线位置vn与原点(即BS本地坐标系O0))之间的信号传播距离之差。
然后,我们定义路径响应矩阵(PRM),Σk∈CLrk×Ltk,来表示从Ok到O0的所有发送和接收信道路径之间的响应,1≤k≤k。其中,Σk第i行第j列的条目为UT k的第j个发射路径与第i个接收路径之间的响应系数,因此,UT k与BS之间的信道矢量可表示为[4],[5]

其中Fk = [Fk (v1), Fk (v2),···,Fk (vN)]∈clark ×N是BS处的场响应矩阵(FRM),由于BS的天线位置固定,所以FRM是一个常数矩阵。

B. Problem Formulation

对于BS处采用线性组合的上行传输,UT k, 1 ≤ k ≤ K 1≤k≤K 1kK 处信号的接收信噪比(SINR)为

γ k = ∣ w k H h k ( u k ) ∣ 2 p k ∑ q = 1 , q ≠ k K ∣ w k H h q ( u q ) ∣ 2 p q + ∥ w k ∥ 2 2 σ 2 (4) \gamma_{k}=\frac{\left|\mathbf{w}_{k}^{\mathrm{H}} \mathbf{h}_{k}\left(\mathbf{u}_{k}\right)\right|^{2} p_{k}}{\sum_{q=1, q \neq k}^{K}\left|\mathbf{w}_{k}^{\mathrm{H}} \mathbf{h}_{q}\left(\mathbf{u}_{q}\right)\right|^{2} p_{q}+\left\|\mathbf{w}_{k}\right\|_{2}^{2} \sigma^{2}}\tag{4} γk=q=1,q=kK wkHhq(uq) 2pq+wk22σ2 wkHhk(uk) 2pk(4)

本文在满足每个UT的最小可达率要求的前提下,通过联合优化每个UT的MA位置、每个UT的发射功率以及BS的接收组合矩阵,以最小化多个UT的总发射功率。设 p = [ p 1 , p 2 , ⋯   , p K ] T \mathbf{p}=\left[p_{1}, p_{2}, \cdots, p_{K}\right]^{\mathrm{T}} p=[p1,p2,,pK]T 表示UT的发射功率矢量。据此,优化问题可以表示为

min ⁡ u ~ , p , W ∑ k = 1 K p k  s.t.  log ⁡ 2 ( 1 + γ k ) ≥ r k , 1 ≤ k ≤ K u k ∈ C k , 1 ≤ k ≤ K p k ≥ 0 , 1 ≤ k ≤ K \begin{aligned} \min _{\tilde{\mathbf{u}}, \mathbf{p}, \mathbf{W}} & \sum_{k=1}^{K} p_{k} \\ \text { s.t. } & \log _{2}\left(1+\gamma_{k}\right) \geq r_{k}, 1 \leq k \leq K \\ & \mathbf{u}_{k} \in \mathcal{C}_{k}, 1 \leq k \leq K \\ & p_{k} \geq 0, \quad 1 \leq k \leq K \end{aligned} u~,p,Wmin s.t. k=1Kpklog2(1+γk)rk,1kKukCk,1kKpk0,1kK

其中约束(5b)表明UT k的可实现速率应不小于其最低要求 r k r_k rk。问题(5)很难解决,因为通道向量和UT的可实现速率相对于(w.r.t.) MAs的位置是非凸的。此外,这些高维矩阵/向量变量之间的耦合使这个问题更加棘手。问题(5)无法用现有的优化工具在多项式时间内得到最优解决。

III. PROPOSED SOLUTION

A. ZF-Based Solution

∑ k = 1 K p ˉ k = ∑ k = 1 K ∥ H ( u ~ ) [ ( H ( u ~ ) H H ( u ~ ) ) − 1 ] : , k ∥ 2 2 η k σ 2 = ∥ H ( u ~ ) ( H ( u ~ ) H H ( u ~ ) ) − 1 Ω 1 / 2 ∥ F 2 = tr ⁡ { ( H ( u ~ ) H H ( u ~ ) ) − 1 Ω } = tr ⁡ { ( Ω − 1 H ( u ~ ) H H ( u ~ ) ) − 1 } = ∑ k = 1 K 1 λ k { Ω − 1 H ( u ~ ) H H ( u ~ ) } ≜ g ( u ~ ) (10) \begin{aligned} \sum_{k=1}^{K} \bar{p}_{k} & =\sum_{k=1}^{K}\left\|\mathbf{H}(\tilde{\mathbf{u}})\left[\left(\mathbf{H}(\tilde{\mathbf{u}})^{\mathrm{H}} \mathbf{H}(\tilde{\mathbf{u}})\right)^{-1}\right]_{:, k}\right\|_{2}^{2} \eta_{k} \sigma^{2} \\ & =\left\|\mathbf{H}(\tilde{\mathbf{u}})\left(\mathbf{H}(\tilde{\mathbf{u}})^{\mathrm{H}} \mathbf{H}(\tilde{\mathbf{u}})\right)^{-1} \boldsymbol{\Omega}^{1 / 2}\right\|_{\mathrm{F}}^{2} \\ & =\operatorname{tr}\left\{\left(\mathbf{H}(\tilde{\mathbf{u}})^{\mathrm{H}} \mathbf{H}(\tilde{\mathbf{u}})\right)^{-1} \boldsymbol{\Omega}\right\} \\ & =\operatorname{tr}\left\{\left(\boldsymbol{\Omega}^{-1} \mathbf{H}(\tilde{\mathbf{u}})^{\mathrm{H}} \mathbf{H}(\tilde{\mathbf{u}})\right)^{-1}\right\} \\ & =\sum_{k=1}^{K} \frac{1}{\lambda_{k}\left\{\boldsymbol{\Omega}^{-1} \mathbf{H}(\tilde{\mathbf{u}})^{\mathrm{H}} \mathbf{H}(\tilde{\mathbf{u}})\right\}} \triangleq g(\tilde{\mathbf{u}}) \end{aligned}\tag{10} k=1Kpˉk=k=1K H(u~)[(H(u~)HH(u~))1]:,k 22ηkσ2= H(u~)(H(u~)HH(u~))1Ω1/2 F2=tr{(H(u~)HH(u~))1Ω}=tr{(Ω1H(u~)HH(u~))1}=k=1Kλk{Ω1H(u~)HH(u~)}1g(u~)(10)

min ⁡ u ~ g ( u ~ )  s.t.  u k ∈ C k , 1 ≤ k ≤ K . \begin{array}{ll} \min _{\tilde{\mathbf{u}}} & g(\tilde{\mathbf{u}}) \\ \text { s.t. } & \mathbf{u}_{k} \in \mathcal{C}_{k}, 1 \leq k \leq K . \end{array} minu~ s.t. g(u~)ukCk,1kK.
g ( u ~ ( t ) ) ≤ g ( u ~ ( t − 1 ) ) − ξ ˉ τ ˉ ( t ) ∥ ∇ u ~ g ( u ~ ( t − 1 ) ) ∥ 2 2 g\left(\tilde{\mathbf{u}}^{(t)}\right) \leq g\left(\tilde{\mathbf{u}}^{(t-1)}\right)-\bar{\xi} \bar{\tau}^{(t)}\left\|\nabla_{\tilde{\mathbf{u}}} g\left(\tilde{\mathbf{u}}^{(t-1)}\right)\right\|_{2}^{2} g(u~(t))g(u~(t1))ξˉτˉ(t) u~g(u~(t1)) 22

B. MMSE-Based Solution

由于MAs的位置、UT的发射功率和BS处的接收组合矩阵之间存在耦合,问题(5)无法得到最优解。为了解决这个问题,我们提出利用最小均方误差(minimum mean square error, MMSE)组合方法将接收组合矩阵表示为MA定位向量的函数,然后优化MA的位置,以最小化多个UT的总发射功率。具体来说,对于任意给定的MA定位矢量(即 u ~ \tilde{\mathbf{u}} u~)和UT的发射功率(即 p \bf p p), MMSE接收机给出的BS最大化可达速率区域的最优线性组合矩阵[11],即:
W M M S E ( u ~ , P ) = ( H ( u ~ ) P H ( u ~ ) H + σ 2 I N ) − 1 H ( u ~ ) ≜ [ w ^ 1 , w ^ 2 , ⋯   , w ^ K ] (6) \begin{aligned} \mathbf{W}_{\mathrm{MMSE}}(\tilde{\mathbf{u}}, \mathbf{P}) & =\left(\mathbf{H}(\tilde{\mathbf{u}}) \mathbf{P H}(\tilde{\mathbf{u}})^{\mathrm{H}}+\sigma^{2} \mathbf{I}_{N}\right)^{-1} \mathbf{H}(\tilde{\mathbf{u}}) \\ & \triangleq\left[\hat{\mathbf{w}}_{1}, \hat{\mathbf{w}}_{2}, \cdots, \hat{\mathbf{w}}_{K}\right] \end{aligned}\tag{6} WMMSE(u~,P)=(H(u~)PH(u~)H+σ2IN)1H(u~)[w^1,w^2,,w^K](6)

w ^ k = ( H ( u ~ ) P H ( u ~ ) H + σ 2 I N ) − 1 h k ( u k ) , 1 ≤ k ≤ K \hat{\mathbf{w}}_{k}=\left(\mathbf{H}(\tilde{\mathbf{u}}) \mathbf{P H}(\tilde{\mathbf{u}})^{\mathrm{H}}+\sigma^{2} \mathbf{I}_{N}\right)^{-1} \mathbf{h}_{k}\left(\mathbf{u}_{k}\right),1 \leq k \leq K w^k=(H(u~)PH(u~)H+σ2IN)1hk(uk),1kK P = diag ⁡ { p } \mathbf{P}=\operatorname{diag}\{\mathbf{p}\} P=diag{p}。则UT k信号的接收SINR可改写为
γ ^ k = ∣ w ^ k H h k ( u k ) ∣ 2 p k ∑ q = 1 , q ≠ k K ∣ w ^ k H h q ( u q ) ∣ 2 p q + ∥ w ^ k ∥ 2 2 σ 2 ≜ A k , k p k ∑ q = 1 , q ≠ k K A k , q p q + b k , 1 ≤ k ≤ K , \begin{aligned} \hat{\gamma}_{k} & =\frac{\left|\hat{\mathbf{w}}_{k}^{\mathrm{H}} \mathbf{h}_{k}\left(\mathbf{u}_{k}\right)\right|^{2} p_{k}}{\sum_{q=1, q \neq k}^{K}\left|\hat{\mathbf{w}}_{k}^{\mathrm{H}} \mathbf{h}_{q}\left(\mathbf{u}_{q}\right)\right|^{2} p_{q}+\left\|\hat{\mathbf{w}}_{k}\right\|_{2}^{2} \sigma^{2}} \\ & \triangleq \frac{A_{k, k} p_{k}}{\sum_{q=1, q \neq k}^{K} A_{k, q} p_{q}+b_{k}}, 1 \leq k \leq K, \end{aligned} γ^k=q=1,q=kK w^kHhq(uq) 2pq+w^k22σ2 w^kHhk(uk) 2pkq=1,q=kKAk,qpq+bkAk,kpk,1kK,

A ∈ R K × K \mathbf{A} \in \mathbb{R}^{K \times K} ARK×K表示一个矩阵,其元素在第k行第q列,由Ak,q给出,b∈RK×1表示一个向量,其第k个元素由bk给出。很容易验证,为了使总发射功率最小,每个UT的SINR应恰好等于其最小要求,即γˆk=ηk2rk−1[10],PK,可以等效地表示为 A k , k / η k × p k = ∑ q = 1 , q ≠ k K A k , q p q + b k , 1 ≤ k ≤ K . A_{k, k} / \eta_{k} \times p_{k}=\sum_{q=1, q \neq k}^{K} A_{k, q} p_{q}+b_{k}, 1 \leq k \leq K . Ak,k/ηk×pk=q=1,q=kKAk,qpq+bk,1kK.。这些方程w.r.t.p的矩阵形式由
p ^ = ( D − Ψ ) − 1 b . (9) \hat{\mathbf{p}}=(\mathbf{D}-\boldsymbol{\Psi})^{-1} \mathbf{b} .\tag{9} p^=(DΨ)1b.(9)

D = diag ⁡ { A 1 , 1 / η 1 , A 2 , 2 / η 2 , ⋯   , A K , K / η K } \mathbf{D}=\operatorname{diag}\left\{A_{1,1} / \eta_{1}, A_{2,2} / \eta_{2}, \cdots, A_{K, K} / \eta_{K}\right\} D=diag{A1,1/η1,A2,2/η2,,AK,K/ηK} [ Ψ ] k , q = A k , q [\boldsymbol{\Psi}]_{k, q}=A_{k, q} [Ψ]k,q=Ak,q,当 1 ≤ k ≠ q ≤ K 1 \leq k \neq q \leq K 1k=qK [ Ψ ] k , k = 0 [\boldsymbol{\Psi}]_{k, k}=0 [Ψ]k,k=0 1 ≤ k ≤ K 1 \leq k \leq K 1kK 时。这样,得到的发射功率的最优解为
p ^ = ( D − Ψ ) − 1 b . \hat{\mathbf{p}}=(\mathbf{D}-\boldsymbol{\Psi})^{-1} \mathbf{b} . p^=(DΨ)1b.

满足最小可达速率约束的UT总发射功率可表示为

∑ k = 1 K p ^ k = ∥ ( D − Ψ ) − 1 b ∥ 1 ≜ f ( u ~ , P ) . (10) \sum_{k=1}^{K} \hat{p}_{k}=\left\|(\mathbf{D}-\mathbf{\Psi})^{-1} \mathbf{b}\right\|_{1} \triangleq f(\tilde{\mathbf{u}}, \mathbf{P}) .\tag{10} k=1Kp^k= (DΨ)1b 1f(u~,P).(10)

需要注意的是,为了保证每个UT的发射功率不为负,需要考虑一个隐式约束,即 p ^ k ≥ 0 , 1 ≤ k ≤ K \hat{p}_{k} \geq 0,1 \leq k \leq K p^k0,1kK。[10]中已经证明,非负功率约束等价于矩阵 D Ψ − 1 \mathbf{D} \boldsymbol{\Psi}^{-1} DΨ1 谱半径小于1。那么,问题(5)就可以转化为

min ⁡ u ~ , P f ( u ~ , P )  s.t.  u k ∈ C k , 1 ≤ k ≤ K , ρ { D Ψ − 1 } < 1 , \begin{array}{ll} \min _{\tilde{\mathbf{u}}, \mathbf{P}} & f(\tilde{\mathbf{u}}, \mathbf{P}) \\ \text { s.t. } & \mathbf{u}_{k} \in \mathcal{C}_{k}, 1 \leq k \leq K, \\ & \rho\left\{\mathbf{D} \boldsymbol{\Psi}^{-1}\right\}<1, \end{array} minu~,P s.t. f(u~,P)ukCk,1kK,ρ{DΨ1}<1,

其中 ρ { D Ψ − 1 } \rho\left\{\mathbf{D} \Psi^{-1}\right\} ρ{DΨ1} 表示矩阵 D Ψ − 1 \mathbf{D} \boldsymbol{\Psi}^{-1} DΨ1 的谱半径,等于其特征值绝对值的最大值。

为了解决上述非凸问题,我们提出了一种交替更新 u ~ \tilde{\mathbf{u}} u~ P \bf P P 的迭代算法,其中 u ~ ( t − 1 ) \tilde{\mathbf{u}}^{(t-1)} u~(t1) P ( t − 1 ) \mathbf{P}^{(t-1)} P(t1) 分别表示MA定位和发射功率在 ( t − 1 ) (t−1) (t1) 次迭代中的解。函数 f ( u ~ , P ) f(\tilde{\mathbf{u}}, \mathbf{P}) f(u~,P) 在位置 ( u ~ ( t − 1 ) , P ( t − 1 ) ) \left(\tilde{\mathbf{u}}^{(t-1)}, \mathbf{P}^{(t-1)}\right) (u~(t1),P(t1)) 关于 u ~ \tilde{\bf u} u~ 的梯度可以计算为
[ ∇ u ~ f ( u ~ ( t − 1 ) , P ( t − 1 ) ) ] i = ∂ f ( u ~ , P ) ∂ [ u ~ ] i ∣ u ~ = u ~ ( t − 1 ) , P = P ( t − 1 ) = lim ⁡ δ → 0 f ( u ~ ( t − 1 ) + δ e 3 K i , P ( t − 1 ) ) − f ( u ~ ( t − 1 ) , P ( t − 1 ) ) δ (12) \begin{aligned} & {\left[\nabla_{\tilde{\mathbf{u}}} f\left(\tilde{\mathbf{u}}^{(t-1)}, \mathbf{P}^{(t-1)}\right)\right]_{i}=\left.\frac{\partial f(\tilde{\mathbf{u}}, \mathbf{P})}{\partial[\tilde{\mathbf{u}}]_{i}}\right|_{\tilde{\mathbf{u}}=\tilde{\mathbf{u}}(t-1), \mathbf{P}=\mathbf{P}^{(t-1)}} } \\ = & \lim _{\delta \rightarrow 0} \frac{f\left(\tilde{\mathbf{u}}^{(t-1)}+\delta \mathbf{e}_{3 K}^{i}, \mathbf{P}^{(t-1)}\right)-f\left(\tilde{\mathbf{u}}^{(t-1)}, \mathbf{P}^{(t-1)}\right)}{\delta} \end{aligned}\tag{12} =[u~f(u~(t1),P(t1))]i=[u~]if(u~,P) u~=u~(t1),P=P(t1)δ0limδf(u~(t1)+δe3Ki,P(t1))f(u~(t1),P(t1))(12)

1 ≤ i ≤ 3 K 1≤i≤3K 1i3K,其中 e 3 K i \mathbf{e}_{3 K}^{i} e3Ki 是一个 3 K 3K 3K 维向量,以1作为第 i i i 个元素,其他地方为0。然后,根据梯度下降法[12],更新第 t t t 次迭代中的MA定位向量

u ~ ( t ) = B { u ~ ( t − 1 ) − τ ^ ( t ) ∇ u ~ f ( u ~ ( t − 1 ) , P ( t − 1 ) ) } , (13) \tilde{\mathbf{u}}^{(t)}=\mathcal{B}\left\{\tilde{\mathbf{u}}^{(t-1)}-\hat{\tau}^{(t)} \nabla_{\tilde{\mathbf{u}}} f\left(\tilde{\mathbf{u}}^{(t-1)}, \mathbf{P}^{(t-1)}\right)\right\},\tag{13} u~(t)=B{u~(t1)τ^(t)u~f(u~(t1),P(t1))},(13)

其中 τ ^ ( t ) \hat{\tau}^{(t)} τ^(t) 是第 t t t 次迭代中梯度下降的步长。 B { u ~ } \mathcal{B}\left\{\tilde{\bf{u}}\right\} B{u~} 是一个函数,如果 u ~ \tilde{\bf{u}} u~ 中的每个元素超过可行区域,则将该元素投射到其可行区域的最近边界,即:

[ B { u ~ } ] i = { [ u ~ ] i min ⁡ ,  if  [ u ~ ] i < [ u ~ ] i min ⁡ , [ u ~ ] i ,  if  [ u ~ ] i min ⁡ ≤ [ u ~ ] i ≤ [ u ~ ] i max ⁡ [ u ~ ] i max ⁡ ,  if  [ u ~ ] i > [ u ~ ] i max ⁡ , (14) [\mathcal{B}\{\tilde{\mathbf{u}}\}]_{i}=\left\{\begin{array}{ll} {[\tilde{\mathbf{u}}]_{i}^{\min },} & \text { if }[\tilde{\mathbf{u}}]_{i}<[\tilde{\mathbf{u}}]_{i}^{\min }, \\ {[\tilde{\mathbf{u}}]_{i},} & \text { if }[\tilde{\mathbf{u}}]_{i}^{\min } \leq[\tilde{\mathbf{u}}]_{i} \leq[\tilde{\mathbf{u}}]_{i}^{\max } \\ {[\tilde{\mathbf{u}}]_{i}^{\max },} & \text { if }[\tilde{\mathbf{u}}]_{i}>[\tilde{\mathbf{u}}]_{i}^{\max }, \end{array}\right.\tag{14} [B{u~}]i= [u~]imin,[u~]i,[u~]imax, if [u~]i<[u~]imin, if [u~]imin[u~]i[u~]imax if [u~]i>[u~]imax,(14)

~ (u ~)中第i个元素的可行域上的界。根据定义u
~对应于uki的qi-th元素,其中ki=⌊i/3⌋+ 1,qi= i−3(ki−1)。

利用投影函数 B { u ~ } \mathcal{B}\left\{\tilde{\bf{u}}\right\} B{u~} 是为了保证MA定位的解在迭代过程中始终位于可行区域。我们知道,步长会显著影响梯度下降算法的性能。在本文中,我们采用回溯线搜索(backtracking line search)来获得一个合适的步长[13]。具体来说,对于每次迭代,我们从一个较大的正步长开始, τ ^ ( t ) = τ ^ \hat{\tau}^{(t)}=\hat{\tau} τ^(t)=τ^,并反复将其缩小一个 κ ^ ∈ ( 0 , 1 ) \hat{\kappa} \in(0,1) κ^(0,1),即 τ ^ ( t ) ← κ ^ τ ^ ( t ) \hat{\tau}^{(t)} \leftarrow \hat{\kappa} \hat{\tau}^{(t)} τ^(t)κ^τ^(t),直到 Armijo–Goldstein 条件和谱半径约束满足

f ( u ~ ( t ) , P ( t − 1 ) ) ≤ f ( u ~ ( t − 1 ) , P ( t − 1 ) ) − ξ ^ τ ^ ( t ) ∥ ∇ u ~ f ( u ~ ( t − 1 ) , P ( t − 1 ) ) ∥ 2 2 , ρ { D ( t ) ( Ψ ( t ) ) − 1 } < 1 , \begin{align*} &f\left(\tilde{\mathbf{u}}^{(t)}, \mathbf{P}^{(t-1)}\right) \leq f\left(\tilde{\mathbf{u}}^{(t-1)}, \mathbf{P}^{(t-1)}\right) -\hat{\xi} \hat{\tau}^{(t)}\left\|\nabla_{\tilde{\mathbf{u}}} f\left(\tilde{\mathbf{u}}^{(t-1)}, \mathbf{P}^{(t-1)}\right)\right\|_{2}^{2}, \tag{15a}\\ &\rho\left\{\mathbf{D}^{(t)}\left(\boldsymbol{\Psi}^{(t)}\right)^{-1}\right\}<1, \tag{15b}\\ \end{align*} f(u~(t),P(t1))f(u~(t1),P(t1))ξ^τ^(t) u~f(u~(t1),P(t1)) 22,ρ{D(t)(Ψ(t))1}<1,(15a)(15b)

其中 ξ ^ ∈ ( 0 , 1 ) \hat{\xi} \in(0,1) ξ^(0,1) 是一个给定的控制参数,用于评估当前步长是否在目标函数中实现了足够的下降。

更新MA定位矢量后,根据式(9)计算 D ( t ) \mathbf{D}^{(t)} D(t), Ψ ( t ) \boldsymbol{\Psi}^{(t)} Ψ(t), b ( t ) , \mathbf{b}^{(t)}, b(t), and p ^ ( t ) \hat{\mathbf{p}}^{(t)} p^(t) 的值,从而将第t次迭代的发射功率矩阵更新为

P ( t ) = diag ⁡ { p ^ ( t ) } (16) \mathbf{P}^{(t)}=\operatorname{diag}\left\{\hat{\mathbf{p}}^{(t)}\right\}\tag{16} P(t)=diag{p^(t)}(16)

直到(5a)中目标值的减量小于一个小正值 ϵ ^ \hat{\epsilon} ϵ^,整个算法才会终止。

在算法1中总结了求解问题(5)的建议解,其中 T ^ max  \hat{T}_{\text {max }} T^max  表示最大迭代次数。在第2-15行,MA定位矢量和发射功率矩阵交替优化,其中将MMSE组合矩阵写成 u ~ \tilde{\mathbf{u}} u~ P \bf P P 的函数进行联合优化。

算法1的收敛性分析如下:对于每次迭代,6-10行MA定位向量的更新可以保证目标函数值是不增加。这是因为 f ( u ~ , P ( t − 1 ) ) f\left(\tilde{\mathbf{u}}, \mathbf{P}^{(t-1)}\right) f(u~,P(t1)) ρ { D Ψ − 1 } \rho\left\{\mathbf{D} \boldsymbol{\Psi}^{-1}\right\} ρ{DΨ1} 都是关于 u ~ \tilde{\mathbf{u}} u~ 连续函数。如果在 ∇ u ~ f ( u ~ ( t − 1 ) , P ( t − 1 ) ) \nabla_{\tilde{\mathbf{u}}} f\left(\tilde{\mathbf{u}}^{(t-1)}, \mathbf{P}^{(t-1)}\right) u~f(u~(t1),P(t1)) 中存在元素不等于零且对应的梯度方向是朝向可行域内部的元素,我们总是可以找到一个足够小的正的 τ ^ ( t ) \hat{\tau}^{(t)} τ^(t),它可以保证f?u ~ (t), P(t−1)?< f u ~ (t−1),P(t−1)?。此外,由于我们有ρD(t−1)(Ψ (t−1)?)−1 < 1,一个足够小的τˆ(t)也可以guarantee?ρD(t)(Ψ(t))−1< 1由于功能的连续性ρDΨ−1。因此,在迭代过程中,我们总能找到a?newsolution?的保证

其中等式在梯度为零的点或位于由(11b)定义的可行域边界上的点保持不变。此外,由于P(t)在第11行中被更新为diag{p}(t)},因此产生了最优MMSE组合矩阵WMMSE(u ~ (t), p (t)),用于在当前发射功率下最大化ut的可实现速率区域pˆ(t)[11]。这表明,WMMSE(u ~ (t),P(t))和P - (t)得到的各UT SINR不小于WMMSE(u ~(t)?,P(t−1))和P - (t)得到的SINR,即γk WMMSE(≈u(t),P(t)), P - (t)≥γk WMMSE(u ~ (t),P(t−1)),P - (t)?, 1≤k≤k。换句话说,更新后的P(t)在求解方程时为降低总发射功率提供了额外的dof

γˆk=ηk,1≤k?≤K。因此,
结合(17)和式(18)可知,算法1可以在迭代过程中实现(5a)中目

标值的不递增序列。由于总发射功率下界为零,因此可以得出算法1求解问题(5)的收敛性是保证的。
在算法1中,主要的计算复杂度是由第2-15行的迭代引起的。具体来说,梯度值的计算复杂度为0 (KN3)。表示第6-10行回溯直线搜索的最大迭代次数为Iˆmax,对应的计算复杂度由O(IˆmaxN3给出)。因此,求解问题(5)的算法1的最大计算复杂度为O?T * max(KN 3 + I * maxN 3)。?

C. Alternative Solution for the Single-User Case

max ⁡ u ∥ h ( u ) ∥ 2 2  s.t.  u ∈ C , \begin{array}{ll} \max _{\mathbf{u}} & \|\mathbf{h}(\mathbf{u})\|_{2}^{2} \\ \text { s.t. } & \mathbf{u} \in \mathcal{C}, \end{array} maxu s.t. h(u)22uC,

根据式(4)中通道向量的定义,式(31a)中的目标函数可表示为
∥ h ( u ) ∥ 2 2 = ∥ F H Σ g ( u ) ∥ 2 2 = g ( u ) H Σ H F F H Σ g ( u ) ≜ g ( u ) H Q g ( u ) \|\mathbf{h}(\mathbf{u})\|_{2}^{2}=\left\|\mathbf{F}^{\mathrm{H}} \boldsymbol{\Sigma} \mathbf{g}(\mathbf{u})\right\|_{2}^{2}=\mathbf{g}(\mathbf{u})^{\mathrm{H}} \boldsymbol{\Sigma}^{\mathrm{H}} \mathbf{F} \mathbf{F}^{\mathrm{H}} \boldsymbol{\Sigma} \mathbf{g}(\mathbf{u}) \triangleq \mathbf{g}(\mathbf{u})^{\mathrm{H}} \mathbf{Q} \mathbf{g}(\mathbf{u}) h(u)22= FHΣg(u) 22=g(u)HΣHFFHΣg(u)g(u)HQg(u)
式中 F ∈ C L r × N \mathbf{F} \in \mathbb{C}^{L^{\mathrm{r}} \times N} FCLr×N Σ ∈ C L t × L r \boldsymbol{\Sigma} \in \mathbb{C}^{L^{\mathrm{t}} \times L^{\mathrm{r}}} ΣCLt×Lr 分别为BS与用户之间的接收FRM和PRM。 L t L^t Lt L r L^r Lr 分别表示发送和接收信道路径数。

∂ g ( u ) H Q g ( u ) ∂ x = ∂ ∑ m = 1 L t ∑ n = 1 L t q m , n e j 2 π λ [ ρ n t ( u ) − ρ m t ( u ) ] ∂ x = ∂ ∑ m = 1 L t ∑ n = 1 L t ℜ { q m , n } cos ⁡ [ 2 π λ ( ρ n t ( u ) − ρ m t ( u ) ) ] − ℑ { q m , n } sin ⁡ [ 2 π λ ( ρ n t ( u ) − ρ m t ( u ) ) ] ∂ x = ∑ m = 1 L t ∑ n = 1 L t ( ϑ m t − ϑ n t ) { ℜ { q m , n } sin ⁡ [ 2 π λ ( ρ n t ( u ) − ρ m t ( u ) ) ] + ℑ { q m , n } cos ⁡ [ 2 π λ ( ρ n t ( u ) − ρ m t ( u ) ) ] } = ∑ m = 1 L t ∑ n = 1 L t ( ϑ m t − ϑ n t ) ∣ q m , n ∣ sin ⁡ [ 2 π λ ( ρ n t ( u ) − ρ m t ( u ) ) + ∠ { q m , n } ] . \begin{aligned} & \frac{\partial \mathbf{g}(\mathbf{u})^{\mathrm{H}} \mathbf{Q} \mathbf{g}(\mathbf{u})}{\partial x}=\frac{\partial \sum_{m=1}^{L^{\mathrm{t}}} \sum_{n=1}^{L^{\mathrm{t}}} q_{m, n} \mathrm{e}^{\mathrm{j} \frac{2 \pi}{\lambda}\left[\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right]}}{\partial x} \\ = & \frac{\partial \sum_{m=1}^{L^{\mathrm{t}}} \sum_{n=1}^{L^{\mathrm{t}}} \Re\left\{q_{m, n}\right\} \cos \left[\frac{2 \pi}{\lambda}\left(\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right)\right]-\Im\left\{q_{m, n}\right\} \sin \left[\frac{2 \pi}{\lambda}\left(\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right)\right]}{\partial x} \\ = & \sum_{m=1}^{L^{\mathrm{t}}} \sum_{n=1}^{L^{\mathrm{t}}}\left(\vartheta_{m}^{\mathrm{t}}-\vartheta_{n}^{\mathrm{t}}\right)\left\{\Re\left\{q_{m, n}\right\} \sin \left[\frac{2 \pi}{\lambda}\left(\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right)\right]+\Im\left\{q_{m, n}\right\} \cos \left[\frac{2 \pi}{\lambda}\left(\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right)\right]\right\} \\ = & \sum_{m=1}^{L^{\mathrm{t}}} \sum_{n=1}^{L^{\mathrm{t}}}\left(\vartheta_{m}^{\mathrm{t}}-\vartheta_{n}^{\mathrm{t}}\right)\left|q_{m, n}\right| \sin \left[\frac{2 \pi}{\lambda}\left(\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right)+\angle\left\{q_{m, n}\right\}\right] . \end{aligned} ===xg(u)HQg(u)=xm=1Ltn=1Ltqm,nejλ2π[ρnt(u)ρmt(u)]xm=1Ltn=1Lt{qm,n}cos[λ2π(ρnt(u)ρmt(u))]{qm,n}sin[λ2π(ρnt(u)ρmt(u))]m=1Ltn=1Lt(ϑmtϑnt){{qm,n}sin[λ2π(ρnt(u)ρmt(u))]+{qm,n}cos[λ2π(ρnt(u)ρmt(u))]}m=1Ltn=1Lt(ϑmtϑnt)qm,nsin[λ2π(ρnt(u)ρmt(u))+{qm,n}].

∂ g ( u ) H Q g ( u ) ∂ y = ∑ m = 1 L t ∑ n = 1 L t ( φ m t − φ n t ) ∣ q m , n ∣ sin ⁡ [ 2 π λ ( ρ n t ( u ) − ρ m t ( u ) ) + ∠ { q m , n } ] ∂ g ( u ) H Q g ( u ) ∂ z = ∑ m = 1 L t ∑ n = 1 L t ( ω m t − ω n t ) ∣ q m , n ∣ sin ⁡ [ 2 π λ ( ρ n t ( u ) − ρ m t ( u ) ) + ∠ { q m , n } ] . \begin{aligned} \frac{\partial \mathbf{g}(\mathbf{u})^{\mathrm{H}} \mathbf{Q g}(\mathbf{u})}{\partial y}&=\sum_{m=1}^{L^{\mathrm{t}}} \sum_{n=1}^{L^{\mathrm{t}}}\left(\varphi_{m}^{\mathrm{t}}-\varphi_{n}^{\mathrm{t}}\right)\left|q_{m, n}\right| \sin \left[\frac{2 \pi}{\lambda}\left(\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right)+\angle\left\{q_{m, n}\right\}\right] \\ \frac{\partial \mathbf{g}(\mathbf{u})^{\mathrm{H}} \mathbf{Q g}(\mathbf{u})}{\partial z}&=\sum_{m=1}^{L^{\mathrm{t}}} \sum_{n=1}^{L^{\mathrm{t}}}\left(\omega_{m}^{\mathrm{t}}-\omega_{n}^{\mathrm{t}}\right)\left|q_{m, n}\right| \sin \left[\frac{2 \pi}{\lambda}\left(\rho_{n}^{\mathrm{t}}(\mathbf{u})-\rho_{m}^{\mathrm{t}}(\mathbf{u})\right)+\angle\left\{q_{m, n}\right\}\right] . \end{aligned} yg(u)HQg(u)zg(u)HQg(u)=m=1Ltn=1Lt(φmtφnt)qm,nsin[λ2π(ρnt(u)ρmt(u))+{qm,n}]=m=1Ltn=1Lt(ωmtωnt)qm,nsin[λ2π(ρnt(u)ρmt(u))+{qm,n}].

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

No_one-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值