OpenCV三维重建(2)--封装标定过程

本文介绍如何利用OpenCV进行三维重建的标定过程。内容来源于OpenCV3 Computer Vision Application Programming Cookbook的第三版,作者Robert Laganiere。虽然书中组织结构不明晰,但通过代码可以理解标定步骤。程序遵循特定的开源许可协议,允许免费使用和修改,但不提供任何故障容忍保证。实测结果表明标定效果显著,尤其在图像边界上有明显改善。
摘要由CSDN通过智能技术生成

OpenCV三维重建(2)--封装标定过程

既然已经能够找到了标定点,那么下边的工作就是使用标定结果了。【这本书在这里的内容组织让人莫名其妙】但是通过阅读代码能够很方便地串起来。

/------------------------------------------------------------------------------------------
This file contains material supporting chapter 11 of the book:
OpenCV3 Computer Vision Application Programming Cookbook
Third Edition
by Robert Laganiere, Packt Publishing, 2016.
This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.
Copyright © 2016 Robert Laganiere, www.laganiere.name

*------------------------------------------------------------------------------------------*/

#include "stdafx.h"
#include <iostream>
#include <iomanip>
#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include "CameraCalibrator.h"
int main()
{
    cv::Mat image;
    std::vector<std::string> filelist;
    // 按照规则读入27张图片
    // 名称为 chessboard01 to chessboard27 
    for (int i=1; i<=27; i++) {
        std::stringstream str;
        str << "E:/template/calibrateImages/calibrate" << std::setw(2) << std::setfill('0') << i << ".bmp";
        std::cout << str.str() << std::endl;
        filelist.push_back(str.str());
        image= cv::imread(str.str(),0);
    }
    // 创建Calibrator类
    CameraCalibrator cameraCalibrator;
    // 根据图片实际情况定下boardSize
    cv::Size boardSize(8,6);
    cameraCalibrator.addChessboardPoints(
        filelist,    // filenames of chessboard image
        boardSize, "Detected points");    // size of chessboard
    // calibrate the camera
    cameraCalibrator.setCalibrationFlag(true,true);
    cameraCalibrator.calibrate(image.size());
    // 测试标定获得的结果
    image = cv::imread(filelist[1],0);
    cv::Size newSize(static_cast<int>(image.cols*1.5), static_cast<int>(image.rows*1.5));
    cv::Mat uImage= cameraCalibrator.remap(image, newSize);
    // display camera matrix
    cv::Mat cameraMatrix= cameraCalibrator.getCameraMatrix();
    std::cout << " Camera intrinsic: " << cameraMatrix.rows << "x" << cameraMatrix.cols << std::endl;
    std::cout << cameraMatrix.at<double>(0,0) << " " << cameraMatrix.at<double>(0,1) << " " << cameraMatrix.at<double>(0,2) << std::endl;
    std::cout << cameraMatrix.at<double>(1,0) << " " << cameraMatrix.at<double>(1,1) << " " << cameraMatrix.at<double>(1,2) << std::endl;
    std::cout << cameraMatrix.at<double>(2,0) << " " << cameraMatrix.at<double>(2,1) << " " << cameraMatrix.at<double>(2,2) << std::endl;
    cv::namedWindow("Original Image");
    cv::imshow("Original Image", image);
    cv::namedWindow("Undistorted Image");
    cv::imshow("Undistorted Image", uImage);
    // Store everything in a xml file
    cv::FileStorage fs("calib.xml", cv::FileStorage::WRITE);
    fs << "Intrinsic" << cameraMatrix;
    fs << "Distortion" << cameraCalibrator.getDistCoeffs();
    cv::waitKey();
    return 0;
}

下面是类库:
/------------------------------------------------------------------------------------------
This file contains material supporting chapter 11 of the book:
OpenCV3 Computer Vision Application Programming Cookbook
Third Edition
by Robert Laganiere, Packt Publishing, 2016.
This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.
Copyright © 2016 Robert Laganiere, www.laganiere.name

*------------------------------------------------------------------------------------------*/

#ifndef CAMERACALIBRATOR_H
#define CAMERACALIBRATOR_H
#include <vector>
#include <iostream>
#include <opencv2/core.hpp>
#include "opencv2/imgproc.hpp"
#include "opencv2/calib3d.hpp"
#include <opencv2/highgui.hpp>
class CameraCalibrator {
    // 输入点:  
    // 世界坐标系中的点 
    //(每个正方形为一个单位) 
    std::vector<std::vector<cv::Point3f> > objectPoints;
    // 点在图像中的位置(以像素为单位) 
    std::vector<std::vector<cv::Point2f> > imagePoints;
    // 输出矩阵 
    cv::Mat cameraMatrix;
    cv::Mat distCoeffs;
    // 指定标定方式的标志
    int flag;
    // used in image undistortion 
    cv::Mat map1,map2; 
    bool mustInitUndistort;
  public:
    CameraCalibrator() : flag(0), mustInitUndistort(true) {}
    // Open the chessboard images and extract corner points
    int addChessboardPoints(const std::vector<std::string>& filelist, cv::Size & boardSize, std::string windowName="");
    // Add scene points and corresponding image points
    void addPoints(const std::vector<cv::Point2f>& imageCorners, const std::vector<cv::Point3f>& objectCorners);
    // Calibrate the camera
    double calibrate(const cv::Size imageSize);
    // Set the calibration flag
    void setCalibrationFlag(bool radial8CoeffEnabled=false, bool tangentialParamEnabled=false);
    // Remove distortion in an image (after calibration)
    cv::Mat remap(const cv::Mat &image, cv::Size &outputSize = cv::Size(-1, -1));
    // Getters
    cv::Mat getCameraMatrix() { return cameraMatrix; }
    cv::Mat getDistCoeffs()   { return distCoeffs; }
};
#endif // CAMERACALIBRATOR_H

/------------------------------------------------------------------------------------------
This file contains material supporting chapter 11 of the book:
OpenCV3 Computer Vision Application Programming Cookbook
Third Edition
by Robert Laganiere, Packt Publishing, 2016.
This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.
Copyright © 2016 Robert Laganiere, www.laganiere.name

*------------------------------------------------------------------------------------------*/

#include "stdafx.h"
#include "CameraCalibrator.h"
// 打开棋盘图像,提取角点 
int CameraCalibrator::addChessboardPoints(
         const std::vector<std::string>& filelist, // 文件名列表
         cv::Size & boardSize,                     // 标定面板的大小 
         std::string windowName) {                 // name of window to display results
                                                   // if null, no display shown
    // 棋盘上的角点 
    std::vector<cv::Point2f> imageCorners;
    std::vector<cv::Point3f> objectCorners;
    // 场景中的三维点: 
    // 在棋盘坐标系中,初始化棋盘中的角点 
    // 角点的三维坐标(X,Y,Z)= (i,j,0) 
    for (int i=0; i<boardSize.height; i++) {
        for (int j=0; j<boardSize.width; j++) {
            objectCorners.push_back(cv::Point3f(i, j, 0.0f));
        }
    }
    // 图像上的二维点:
    cv::Mat image; // 用于存储棋盘图像 
    int successes = 0;
    // 处理所有视角 
    for (int i=0; i<filelist.size(); i++) {
        // 打开图像
        image = cv::imread(filelist[i],0);
        // 取得棋盘中的角点
        bool found = cv::findChessboardCorners(image,         // 包含棋盘图案的图像
                                               boardSize,     // 图案的大小
                                               imageCorners); // 检测到角点的列表
        // 取得角点上的亚像素级精度
        if (found) {
            cv::cornerSubPix(image, imageCorners,
                cv::Size(5, 5), // 搜索窗口的半径 
                cv::Size(-1, -1),
                cv::TermCriteria(cv::TermCriteria::MAX_ITER +
                    cv::TermCriteria::EPS,
                    30,        // 最大迭代次数 
                    0.1));  // 最小精度 
            // 如果棋盘是完好的,就把它加入结果  
            if (imageCorners.size() == boardSize.area()) {
                // 加入从同一个视角得到的图像和场景点 
                addPoints(imageCorners, objectCorners);
                successes++;
            }
        }
        if (windowName.length()>0 && imageCorners.size() == boardSize.area()) {
        
            //Draw the corners
            cv::drawChessboardCorners(image, boardSize, imageCorners, found);
            cv::imshow(windowName, image);
            cv::waitKey(100);
        }
    }
    return successes;
}
// Add scene points and corresponding image points
void CameraCalibrator::addPoints(const std::vector<cv::Point2f>& imageCorners, const std::vector<cv::Point3f>& objectCorners) {
    // 2D image points from one view
    imagePoints.push_back(imageCorners);          
    // corresponding 3D scene points
    objectPoints.push_back(objectCorners);
}
// 标定相机 
// 返回重投影误差 
double CameraCalibrator::calibrate(const cv::Size imageSize)
{
    mustInitUndistort= true;
    // 输出旋转量和平移量 
    std::vector<cv::Mat> rvecs, tvecs;
    // 开始标定
    return 
     calibrateCamera(objectPoints, // 三维点 
                    imagePoints,   // 图像点 
                    imageSize,     // 图像尺寸 
                    cameraMatrix,  // 输出相机矩阵 
                    distCoeffs,    // 输出畸变矩阵 
                    rvecs, tvecs,  // Rs、Ts 
                    flag);         // 设置选项 
//                    ,CV_CALIB_USE_INTRINSIC_GUESS);
}
// 去除图像中的畸变(标定后) 
cv::Mat CameraCalibrator::remap(const cv::Mat &image, cv::Size &outputSize) {
    cv::Mat undistorted;
    if (outputSize.height == -1)
        outputSize = image.size();
    if (mustInitUndistort) { // 每个标定过程调用一次  
    
        cv::initUndistortRectifyMap(
            cameraMatrix,  // 计算得到的相机矩阵 
            distCoeffs,    // 计算得到的畸变矩阵 
            cv::Mat(),     // 可选矫正项(无) 
            cv::Mat(),     // 生成无畸变的相机矩阵
            outputSize,    // 无畸变图像的尺寸
            CV_32FC1,      // 输出图片的类型 
            map1, map2);   // x 和 y 映射功能 
        mustInitUndistort= false;
    }
    // Apply mapping functions
    cv::remap(image, undistorted, map1, map2, 
        cv::INTER_LINEAR); // interpolation type
    return undistorted;
}
// Set the calibration options
// 8radialCoeffEnabled should be true if 8 radial coefficients are required (5 is default)
// tangentialParamEnabled should be true if tangeantial distortion is present
void CameraCalibrator::setCalibrationFlag(bool radial8CoeffEnabled, bool tangentialParamEnabled) {
    // Set the flag used in cv::calibrateCamera()
    flag = 0;
    if (!tangentialParamEnabled) flag += CV_CALIB_ZERO_TANGENT_DIST;
    if (radial8CoeffEnabled) flag += CV_CALIB_RATIONAL_MODEL;
}

一发3连之后,倒是的确能够获得标定的结果,看上去也不错,问题就是缺乏量化的东西。
在这里插入图片描述

效果似乎是更好一些:
在这里插入图片描述在这里插入图片描述

从边界上能够看出被拉动了好多,但是实际上不认真分析的话还真看不出来。

来自为知笔记(Wiz)

附件列表

目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值