1. Places2
The Places2 dataset contains more than 10 million images in total with over 400 unique scene categories. This dataset has 5000 to 30,000 training images per class. Since this dataset contains a large number of real scenes, it is widely used in the field of Image Inpainting. As we can see, nearly 5 years, just in the CVPR, the dataset Places 2 has been used over 5 times.
(1)Image Inpainting with External-internal Learning and Monochromic Bottleneck
(2)Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE
(3)PD-GAN: Probabilistic Diverse GAN for Image Inpainting
(4)UCTGAN: Diverse Image Inpainting based on Unsupervised Cross-Space Transl