机器学习决策树总结

1、原理:决策树是一种树结构,他包括根节点,分支,叶子结点三部分,根节点表示树的一个属性,叶子表示分类的标记,分支表示输出的结果。该方法从根节点开始循环反复遍历 ,根据测试所得出的结果,将实例分配到其子节点,每个子节点都会对应该特征的一个取值,通过递归的方法,继续对实例进行测试与分配,直到到达 叶节点,最后将实例分到叶节点的类中。

2、生成树的过程:

1⃣️ 特征选择:

方法:ID3,C4.5,CART决策树

ID3:选择信息增益大的特征,但是信息增益准则对可取值数目较多的属性有所偏好,为减少这种偏好带来的不利影响,可以通过C4.5来降低影响。

C4.5:选择信息增益率大的特征(信息增益率=信息增益/IV(a)),但是信息增益率可能对取值数目较少的属性有所偏好,因此有一个启发式:先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。

CART决策树:使用基尼指数来选择划分属性,直观来说,基尼指数反映了从数据集D中随机抽取两个样本,其类别标志不一样的概率,因此,基尼指数越小,则数据集D的纯度就越高。

2⃣️决策树的生成

通过以上三种方法,可以递归的生成一颗决策树。

3⃣️决策树的剪枝

剪枝主要是为了对付“过拟合”的问题,即模型对训练样本学的太好了,以至于把训练样本自身的一些特点当作所有数据都具备的特点,而导致了过拟合的问题,因此,可通过主动剪掉一些分支来降低过拟合的风险。

主要方法有预剪枝和后剪枝。

1)预剪枝:是指在决策树生成的过程中,对每个结点在划分前进行估计,若当前结点的划分不能带来泛化能力的提升,则停止划分,并将当前结点标记为叶子结点。

评价预剪枝:

优点:不仅降低了过拟合的风险,还显著减少了训练时间和测试时间的开销

缺点:虽然有些分支在当前的划分不能提升泛化能力,甚至导致泛化能力暂时下降,但在其基础上进行的后续划分,却有可能导致性能显著提高;预剪枝基于这种贪心的本质,禁止这些分支展开,可能会带来欠拟合的风险。

2)后剪枝:先从训练集生成一颗完整的决策树,并且自底向上的对非叶子结点进行考察,若将该结点对应的子数替换成叶子结点,能够带来泛化能力的提升,则将该子数替换成叶子结点。

评价后剪枝:

优点:后剪枝的欠拟合风险很小,泛化能力往往优于预剪枝

缺点:后剪枝是在生成完全决策树之后进行的,并且要自底向上的对决策树中所有非叶子结点进行考察,因此其训练时间开销比未剪枝决策树和预剪枝决策树都要大得多。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值