原理:人工神经网络是基于称为人工神经元的连接单元或节点所构成的集合,这些单元或节点松散地模拟生物大脑中的神经元。像生物大脑中的突触一样,每个连接可以将信号从一个人工神经元传输到另一个人工神经元。接收信号的人工神经元可以对其进行处理,然后向与之相连的附加人造神经元发出信号。从本质上来讲,它是通过一个复合函数f去逼近目标函数f*的值的算法。
适用范围:
非线性、对数据的基本关系不做任何假设。
步骤:
1.搭建基本模块——神经元。先将两个输入乘以权重(weight):x1→x1 × w1 x2→x2 × w2把两个结果想加,再加上一个偏置(bias):(x1 × w1)+(x2 × w2)+ b,最后将它们经过激活函数(activation function)处理得到输出:y = f(x1 × w1 + x2 × w2 + b),激活函数的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是sigmoid函数&