机器学习支持向量机总结

本文详细介绍了支持向量机(SVM)的基本原理,强调其寻找最大几何间隔分离超平面的方法。SVM因其强大的理论基础、良好的泛化能力和对异常值的不敏感性而备受推崇。然而,它在处理大规模数据集时的效率问题、解决多分类任务的复杂性以及对核函数选择的敏感性成为其主要缺点。针对这些问题,文中也提及了一些解决方案和应对策略。
摘要由CSDN通过智能技术生成

原理:SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如下图所示, w·x+b=0 即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。

适用范围:

二分类

优点: 

  1. SVM是一种有坚实理论基础的新颖的适用小样本学习方法。它基本上不涉及概率测度及大数定律等,也简化了通常的分类和回归等问题
  2.  计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
  3. 少数支持向量决定了最终结果,对异常值不敏感, 这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒性”
  4. SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值,
  5. 有优秀的泛化能力。

 缺点:

  1. 对大规模训练样本难以实施。SVM的空间消耗主要是存储训练样本和核矩阵,由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。如果数据量很大,SVM的训练时间就会比较长,如垃圾邮件的分类检测,没有使用SVM分类器,而是使用简单的朴素贝叶斯分类器,或者是使用逻辑回归模型分类。
  2. 解决多分类问题困难。经典的支持向量机算法只给出了二类分类的算法,而在实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗糙集理论结合,形成一种优势互补的多类问题的组合分类器。
  3. 对参数和核函数选择敏感。支持向量机性能的优劣主要取决于核函数的选取,所以对于一个实际问题而言,如何根据实际的数据模型选择合适的核函数从而构造SVM算法。目前比较成熟的核函数及其参数的选择都是人为的,根据经验来选取的,带有一定的随意性。在不同的问题领域,核函数应当具有不同的形式和参数,所以在选取时候应该将领域知识引入进来,但是目前还没有好的方法来解决核函数的选取问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值