n维向量

n维向量

  n个数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an构成的有序数组称为n维向量
[ α 1 α 2 . . . α m ] \left[\begin{matrix} \alpha_1&\alpha_2&...&\alpha_m \end{matrix}\right] [α1α2...αm] 行向量

[ x 1 x 2 ⋮ x m ] \left[\begin{matrix} x_1\\x_2\\ \vdots \\x_m \end{matrix}\right] x1x2xm 列向量

a i a_i ai称为向量的第 i i i个分量

定理1 向量 β \beta β可由 α 1 α 2 . . . α m \alpha_1\alpha_2...\alpha_m α1α2...αm线性表示    ⟺    \iff ∃ \exists 实数 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km使 k 1 α 1 + k 2 α 2 + . . . + k m α m = β k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m=\beta k1α1+k2α2+...+kmαm=β    ⟺    \iff 方程组 [ α 1 α 2 . . . α m ] \left[\begin{matrix} \alpha_1&\alpha_2&...&\alpha_m \end{matrix}\right] [α1α2...αm] [ x 1 x 2 ⋮ x m ] = β \left[\begin{matrix} x_1\\x_2\\ \vdots \\x_m \end{matrix}\right]=\beta x1x2xm=β有解    ⟺    \iff r ( α 1 α 2 . . . α m ) = r ( α 1 α 2 . . . α m β ) r(\alpha_1\alpha_2...\alpha_m)=r(\alpha_1\alpha_2...\alpha_m\beta) r(α1α2...αm)=r(α1α2...αmβ)

定理2 n元齐次线性方程组 A x = 0 Ax=0 Ax=0有非零解    ⟺    \iff r ( A ) < n r(A)<n r(A)<n

定理3 矩阵方程 A X = B AX=B AX=B有解    ⟺    \iff r ( A ) = r ( A , B ) r(A) = r(A,B) r(A)=r(A,B)

定理4 若向量组 B = ( β 1 β 2 . . . β t ) B=(\beta_1 \beta_2...\beta_t) B=(β1β2...βt)可由向量组 A = ( α 1 α 2 . . . α s ) A=(\alpha_1\alpha_2...\alpha_s) A=(α1α2...αs)线性表示,则 r ( B ) ≤ r ( A ) r(B)\le r(A) r(B)r(A)

推论: 向量组 A = ( α 1 α 2 . . . α s ) A=(\alpha_1\alpha_2...\alpha_s) A=(α1α2...αs) B = ( β 1 β 2 . . . β t ) B=(\beta_1 \beta_2...\beta_t) B=(β1β2...βt)等价    ⟺    \iff r ( A ) = r ( B ) = r ( A , B ) r(A)=r(B)=r(A,B) r(A)=r(B)=r(A,B)

向量线性相关

定义 设向量组 A = ( α 1 α 2 . . . α s ) A=(\alpha_1\alpha_2...\alpha_s) A=(α1α2...αs) B = ( β 1 β 2 . . . β t ) B=(\beta_1 \beta_2...\beta_t) B=(β1β2...βt)
若A中每个向量 α i \alpha_i αi均可由B线性表示,则称向量组A可由向量组B线性表示
若向量组A和向量组B互相线性表示,则称向量组A和向量组B等价

定理1 m个n维向量 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性相关    ⟺    \iff ∃ \exists 不全为0的 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km使 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0 k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m=0 k1α1+k2α2+...+kmαm=0    ⟺    \iff 齐次方程组 [ α 1 α 2 . . . α m ] \left[\begin{matrix} \alpha_1&\alpha_2&...&\alpha_m \end{matrix}\right] [α1α2...αm] [ x 1 x 2 ⋮ x m ] = 0 \left[\begin{matrix} x_1\\x_2\\ \vdots \\x_m \end{matrix}\right]=0 x1x2xm=0有非零解    ⟺    \iff r ( α 1 α 2 . . . α m ) < m r(\alpha_1\alpha_2...\alpha_m)<m r(α1α2...αm)<m

推论1: n个n维向量 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn线性相关    ⟺    \iff ∣ α 1 α 2 . . . α n ∣ = 0 |\alpha_1\alpha_2...\alpha_n| = 0 α1α2...αn=0 (克拉默法则:n个方程n个未知数行列式为0 ⇒ \Rightarrow 齐次方程组有非零解 ⇒ \Rightarrow 线性相关)

推论2: n+1个n维向量必线性相关

推论3: α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性相关 ⇒ \Rightarrow α 1 , α 2 , . . . , α s , . . . , α t \alpha_1,\alpha_2,...,\alpha_s,...,\alpha_t α1,α2,...,αs,...,αt必线性相关

推论4: α 1 = [ a 11 a 21 a 31 ] \alpha_1=\left[\begin{matrix} a_{11}\\ a_{21}\\ a_{31}\\ \end{matrix}\right] α1=a11a21a31, α 2 = [ a 12 a 22 a 32 ] \alpha_2=\left[\begin{matrix} a_{12}\\ a_{22}\\ a_{32}\\ \end{matrix}\right] α2=a12a22a32, α 3 = [ a 13 a 23 a 33 ] \alpha_3=\left[\begin{matrix} a_{13}\\ a_{23}\\ a_{33}\\ \end{matrix}\right] α3=a13a23a33线性无关 ⇒ \Rightarrow a ~ 1 = [ a 11 a 21 a 31 ⋮ a n 1 ] \tilde{a}_1 = \left[\begin{matrix} a_{11}\\ a_{21}\\ a_{31}\\ \vdots\\ a_{n1} \end{matrix}\right] a~1=a11a21a31an1, a ~ 2 = [ a 12 a 22 a 32 ⋮ a n 2 ] \tilde{a}_2 = \left[\begin{matrix} a_{12}\\ a_{22}\\ a_{32}\\ \vdots\\ a_{n2} \end{matrix}\right] a~2=a12a22a32an2, a ~ 3 = [ a 13 a 23 a 33 ⋮ a n 3 ] \tilde{a}_3 = \left[\begin{matrix} a_{13}\\ a_{23}\\ a_{33}\\ \vdots\\ a_{n3} \end{matrix}\right] a~3=a13a23a33an3必线性无关

一,二,三维向量几何意义
α \alpha α线性相关    ⟺    \iff α = 0 \alpha = 0 α=0
α 1 , α 2 \alpha_1,\alpha_2 α1,α2线性相关    ⟺    \iff α 1 , α 2 \alpha_1,\alpha_2 α1,α2共线
α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性相关    ⟺    \iff α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3共面

定理2 向量组 α 1 , α 2 , . . . , α s ( s ≥ 2 ) \alpha_1,\alpha_2,...,\alpha_s(s≥2) α1,α2,...,αs(s2)线性相关    ⟺    \iff 至少有一个向量 α i \alpha_i αi可由其余向量 α 1 . . . α i − 1 α i + 1 . . . α s \alpha_1...\alpha_{i-1}\alpha_{i+1}...\alpha_s α1...αi1αi+1...αs线性表示

定理3 若n维向量 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性无关,而 α 1 , α 2 , . . . , α s β \alpha_1,\alpha_2,...,\alpha_s\beta α1,α2,...,αsβ线性相关,则向量 β \beta β必能由 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性表示且表示方法唯一

定理4 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs可由 β 1 β 2 . . . β t \beta_1 \beta_2...\beta_t β1β2...βt线性表示且 s > t s>t s>t,则 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs必线性相关

推论: α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性无关且 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs可由 β 1 β 2 . . . β t \beta_1 \beta_2...\beta_t β1β2...βt线性表示则 s ≤ t s≤t st (定理4的逆否命题)

向量的秩

定义 在向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs中, ∃ r \exist r r个向量 α i 1 α i 2 . . . α i r \alpha_{i1}\alpha_{i2}...\alpha_{ir} αi1αi2...αir线性无关,再添加一个向量 α j ( j = 1 , 2 , . . . , s ) \alpha_j(j=1,2,...,s) αj(j=1,2,...,s),向量组 α i 1 α i 2 . . . α i r α j \alpha_{i1}\alpha_{i2}...\alpha_{ir}\alpha_j αi1αi2...αirαj就线性相关,则称 α i 1 α i 2 . . . α i r \alpha_{i1}\alpha_{i2}...\alpha_{ir} αi1αi2...αir是向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs极大线性无关组

等价定义 设向量组 α i 1 α i 2 . . . α i r \alpha_{i1}\alpha_{i2}...\alpha_{ir} αi1αi2...αir是向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs的一个部分组,且满足:
(1) α i 1 α i 2 . . . α i r \alpha_{i1}\alpha_{i2}...\alpha_{ir} αi1αi2...αir线性无关
(2)任何一个向量 α j ( j = 1 , 2 , . . . , s ) \alpha_j(j=1,2,...,s) αj(j=1,2,...,s)都能由 α i 1 α i 2 . . . α i r \alpha_{i1}\alpha_{i2}...\alpha_{ir} αi1αi2...αir线性表示

定理1 α i 1 α i 2 . . . α i r \alpha_{i1}\alpha_{i2}...\alpha_{ir} αi1αi2...αir α j 1 α j 2 . . . α j t \alpha_{j1}\alpha_{j2}...\alpha_{jt} αj1αj2...αjt都是向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs的极大线性无关组则 r = t r=t r=t

定义 向量组 α 1 α 2 . . . α s \alpha_1\alpha_2...\alpha_s α1α2...αs的极大线性无关组中所含向量的个数 r r r称为向量组的秩,记为 r ( α 1 α 2 . . . α s ) = r r(\alpha_1\alpha_2...\alpha_s)=r r(α1α2...αs)=r

定理2 P P P可逆且 P A = B PA=B PA=B则A的列向量与B的列向量
(1)相同的线性相关性
(2)相同的线性表示方法

定理3 矩阵A的秩等于等于A的列向量组的秩,也等于行向量组的秩(三秩相等定理

向量空间

定理 W − n W-n Wn维向量的非空集合,且
  (1)加法封闭性: ∀ α , β ∈ W ⇒ α + β = W \forall\alpha,\beta\in W\Rightarrow\alpha+\beta=W α,βWα+β=W
  (2)数乘封闭性: ∀ α ∈ W , ∀ k ⇒ k α ∈ W \forall\alpha\in W,\forall k\Rightarrow k\alpha\in W αW,kkαW
则称 W W W n n n维向量空间的子空间

定义 如果向量空间 V V V中的向量 α 1 α 2 . . . α m \alpha_1\alpha_2...\alpha_m α1α2...αm满足:
  (1) α 1 α 2 . . . α m \alpha_1\alpha_2...\alpha_m α1α2...αm线性无关
  (2) V V V中任意向量 β \beta β均可由 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性表出,即
x 1 α 1 + x 2 α 2 + . . . + x m α m = β x_1\alpha_1+x_2\alpha_2+...+x_m\alpha_m=\beta x1α1+x2α2+...+xmαm=β
则称 α 1 α 2 . . . α m \alpha_1\alpha_2...\alpha_m α1α2...αm是空间向量 V V V
   m m m称为空间向量的维数,称 V V V m m m维向量空间
  数组 x 1 x 2 . . . x m x_1x_2...x_m x1x2...xm称为向量 β \beta β在基 α 1 α 2 . . . α m \alpha_1\alpha_2...\alpha_m α1α2...αm下的坐标
PS:此处将基类比向量极大线性无关组,维数类比向量组的秩更易于理解

定理 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3 R 3 R^3 R3的两个基
β 1 = c 11 α 1 + c 12 α 2 + c 13 α 3 \beta_1=c_{11}\alpha_1+c_{12}\alpha_2+c_{13}\alpha_3 β1=c11α1+c12α2+c13α3
β 2 = c 21 α 1 + c 22 α 2 + c 23 α 3 \beta_2=c_{21}\alpha_1+c_{22}\alpha_2+c_{23}\alpha_3 β2=c21α1+c22α2+c23α3
β 3 = c 31 α 1 + c 32 α 2 + c 33 α 3 \beta_3=c_{31}\alpha_1+c_{32}\alpha_2+c_{33}\alpha_3 β3=c31α1+c32α2+c33α3

[ β 1 β 2 β 3 ] = [ α 1 α 2 α 3 ] [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] = [ α 1 α 2 α 3 ] C \left[\begin{matrix} \beta_1&\beta_2&\beta_3\\ \end{matrix}\right]=\left[\begin{matrix} \alpha_1&\alpha_2&\alpha_3\\ \end{matrix}\right]\left[\begin{matrix} c_{11}&c_{12}&c_{13}\\ c_{21}&c_{22}&c_{23}\\ c_{31}&c_{32}&c_{33}\\ \end{matrix}\right]=\left[\begin{matrix} \alpha_1&\alpha_2&\alpha_3\\ \end{matrix}\right]C [β1β2β3]=[α1α2α3]c11c21c31c12c22c32c13c23c33=[α1α2α3]C
称矩阵 C C C为由基 α 1 α 2 α 3 \alpha_1\alpha_2\alpha_3 α1α2α3到基 β 1 β 2 β 3 \beta_1\beta_2\beta_3 β1β2β3过渡矩阵

坐标变换公式
α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3 R 3 R^3 R3的两个基且 ( β 1 , β 2 , β 3 ) = ( α 1 , α 2 , α 3 ) C (\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)C (β1,β2,β3)=(α1,α2,α3)C
若向量 γ \gamma γ在这两个基下的坐标分别是
( x 1 , x 2 , x 3 ) T 与 ( y 1 , y 2 , y 3 ) T (x_1,x_2,x_3)^T与(y_1,y_2,y_3)^T (x1,x2,x3)T(y1,y2,y3)T
γ = x 1 α 1 + x 2 α 2 + x 3 α 3 = ( α 1 , α 2 , α 3 ) [ x 1 x 2 x 3 ] \gamma=x_1\alpha_1+x_2\alpha_2+x_3\alpha_3=(\alpha_1,\alpha_2,\alpha_3)\left[\begin{matrix} x_1\\ x_2\\ x_3\\ \end{matrix}\right] γ=x1α1+x2α2+x3α3=(α1,α2,α3)x1x2x3

γ = y 1 β 1 + y 2 β 2 + y 3 β 3 = ( β 1 , β 2 , β 3 ) [ y 1 y 2 y 3 ] \gamma=y_1\beta_1+y_2\beta_2+y_3\beta_3=(\beta_1,\beta_2,\beta_3)\left[\begin{matrix} y_1\\ y_2\\ y_3\\ \end{matrix}\right] γ=y1β1+y2β2+y3β3=(β1,β2,β3)y1y2y3

那么 ( α 1 , α 2 , α 3 ) [ x 1 x 2 x 3 ] = ( β 1 , β 2 , β 3 ) [ y 1 y 2 y 3 ] = ( α 1 , α 2 , α 3 ) C [ y 1 y 2 y 3 ] (\alpha_1,\alpha_2,\alpha_3)\left[\begin{matrix} x_1\\ x_2\\ x_3\\ \end{matrix}\right]=(\beta_1,\beta_2,\beta_3)\left[\begin{matrix} y_1\\ y_2\\ y_3\\ \end{matrix}\right]=(\alpha_1,\alpha_2,\alpha_3)C\left[\begin{matrix} y_1\\ y_2\\ y_3\\ \end{matrix}\right] (α1,α2,α3)x1x2x3=(β1,β2,β3)y1y2y3=(α1,α2,α3)Cy1y2y3
故坐标变换公式为 [ x 1 x 2 x 3 ] = C [ y 1 y 2 y 3 ] \left[\begin{matrix} x_1\\ x_2\\ x_3\\ \end{matrix}\right]=C\left[\begin{matrix} y_1\\ y_2\\ y_3\\ \end{matrix}\right] x1x2x3=Cy1y2y3,简记为 x = C y x=Cy x=Cy

向量内积

定理 n n n维向量是 α 1 α 2 . . . α r \alpha_1\alpha_2...\alpha_r α1α2...αr是一组两两正交的非零向量,则 α 1 α 2 . . . α r \alpha_1\alpha_2...\alpha_r α1α2...αr线性无关

施密特正交化
α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性无关
β 1 = α 1 \beta_1=\alpha_1 β1=α1

β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)} {(\beta_1,\beta_1)}\beta_1 β2=α2(β1,β1)(α2,β1)β1

β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)} {(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)} {(\beta_2,\beta_2)}\beta_2 β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2
β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3两两正交
再单位化 γ i = β i ∣ ∣ β i ∣ ∣ ( i = 1 , 2 , 3 ) \gamma_i=\frac{\beta_i}{||\beta_i||}(i=1,2,3) γi=βiβi(i=1,2,3)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值