一文通俗搞懂线性无关特征向量个数≤特征值重数

线代有个很难理解的知识点,即同一特征值的线性无关特征向量个数要小于等于特征值重数。 这个结论是怎么来的呢?本文用最朴素的证明来帮助大家弄懂这个知识点(结论推导所用的都是基础的线代知识,只是有些数学式子比较复杂,认真看完,理解很容易,相信自己!)。

a.首先一起看下会用到的两个tips:
tip 1:一定可以找到n个线性无关的n维向量,且它们可以表示任何一个n维向量

比如2维向量:能找到 α 1 = ( 1 , 0 ) T 和 α 2 = ( 1 , 1 ) T \alpha_{1}=(1,0)^{T} 和 \alpha_{2}=(1,1)^{T} α1=(1,0)Tα2=(1,1)T
两个线性无关的向量,能表示二维平面里面的所有向量。
3维向量:能找到 α 1 = ( 1 , 0 , 0 ) T , α 2 = ( 1 , 1 , 0 ) T , α 3 = ( 0 , 1 , 1 ) T \alpha_{1}=(1,0,0)^{T} , \alpha_{2}=(1,1,0)^{T} ,\alpha_{3}=(0,1,1)^{T} α1=(1,0,0)Tα2=(1,1,0)Tα3=(0,1,1)T三个线性无关的向量,能表示三维立体空间里面的所有向量。

例图

tip 2:来计算一下某种行列式的值

n阶行列式:
在这里插入图片描述
以5阶为例,一起来找规律。
找规律
由此可见,其行列式的值都是x的某次方乘以一堆式子。

于是我们将此规律扩展到n维:
在这里插入图片描述

拓展到n维(为了方便,将后面的常数用“星号”代替)
至此两个需要用到的tips讲完了,接着开始证明。

b.准备就绪,开始证明:

设A为n阶矩阵, λ 1 \lambda_{1} λ1 是它特征值(重根), α 1   α m \alpha_{1} ~ \alpha_{m} α1 αm 分别为其m个线性无关的特征向量。所以我们所要证明的就是 λ 1 \lambda_{1} λ1 的重数要≥m

证明:
1.构造一个n阶可逆矩阵P:

由于 α 1 \alpha_{1} α1 ~ α m \alpha_{m} αm 为n维向量,所以一定能找到 α m + 1 \alpha_{m+1} αm+1 ~ α n \alpha_{n} αn,使 α 1 \alpha_{1} α1 ~ α n \alpha_{n} αn 线性无关且可以表示任何一个n维向量(根据前面tip 1得到的)
因此可以构造出一个n阶可逆矩阵
P = ( α 1 , α 2 , … , α m , α m + 1 , … , α n ) P=\left( \alpha_{1} ,\alpha_{2} ,…,\alpha_{m} ,\alpha_{m+1} ,…,\alpha_{n} \right) P=(α1,α2,,αm,αm+1,αn)

2.A左乘可逆矩阵P:

A P = ( A α 1 , A α 2 , … , A α m , A α m + 1 , … , A α n ) AP=\left( A\alpha_{1} ,A\alpha_{2} ,…,A\alpha_{m} ,A\alpha_{m+1} ,…,A\alpha_{n} \right) AP=(Aα1,Aα2,,Aαm,Aαm+1,Aαn)
由特征值与特征向量的关系: A α i = λ 1 α i A\alpha_{i}=\lambda_{1}\alpha_{i} Aαi=λ1αi (其中i=1,2,……,m)得
A P = ( λ 1 α 1 , λ 1 α 2 , … , λ 1 α m , A α m + 1 , … , A α n ) AP=\left( \lambda_{1}\alpha_{1} ,\lambda_{1}\alpha_{2} ,…,\lambda_{1}\alpha_{m} ,A\alpha_{m+1} ,…,A\alpha_{n} \right) AP=(λ1α1,λ1α2,,λ1αm,Aαm+1,Aαn)
又因为: A α i A\alpha_{i} Aαi 的结果为n维向量(i=m+1,m+2,…,n)
所以 A α i A\alpha_{i} Aαi 的结果可以用 α 1 \alpha_{1} α1 ~ α n \alpha_{n} αn 线性表示出来(根据tip 1得到的),即:
A α i = a 1 i α 1 + a 2 i α 2 + … + a n i α n = ∑ k = 1 n a k i α k ( i = m + 1 , m + 2 , … , n ) A\alpha_{i}=a_{1i}\alpha_{1}+a_{2i}\alpha_{2}+…+a_{ni}\alpha_{n}=\sum_{k=1}^{n}{a_{ki}\alpha_{ k}} (i=m+1,m+2,…,n) Aαi=a1iα1+a2iα2++aniαn=k=1nakiαki=m+1m+2n

2.把AP的结果用矩阵表示:

A P = ( λ 1 α 1 , λ 1 α 2 , … , λ 1 α m , A α m + 1 , … , A α n ) AP=\left( \lambda_{1}\alpha_{1} ,\lambda_{1}\alpha_{2} ,…,\lambda_{1}\alpha_{m} ,A\alpha_{m+1} ,…,A\alpha_{n} \right) AP=(λ1α1,λ1α2,,λ1αm,Aαm+1,Aαn)
⇒ A P = ( λ 1 α 1 , λ 1 α 2 , … , λ 1 α m , ∑ k = 1 n a k ( m + 1 ) α k , … , ∑ k = 1 n a k n α k ) \Rightarrow AP=\left( \lambda_{1}\alpha_{1} ,\lambda_{1}\alpha_{2} ,…,\lambda_{1}\alpha_{m} ,\sum_{k=1}^{n}{a_{k(m+1)}\alpha_{ k}} ,…,\sum_{k=1}^{n}{a_{kn}\alpha_{ k}} \right) AP=(λ1α1,λ1α2,,λ1αm,k=1nak(m+1)αk,k=1naknαk)
⇒ A p = ( α 1 , α 2 , … , α m , α m + 1 , … , α n ) \Rightarrow Ap=\left( \alpha_{1} ,\alpha_{2} ,…,\alpha_{m} ,\alpha_{m+1} ,…,\alpha_{n} \right) Ap=(α1,α2,,αm,αm+1,αn)· ( λ 1 a 1 ( m + 1 ) ⋯ a 1 n λ 1 a 2 ( m + 1 ) ⋯ a 2 n ⋱ ⋮ ⋮ λ 1 a m ( m + 1 ) ⋯ a m n 0 0 ⋯ 0 a ( m + 1 ) ( m + 1 ) ⋯ a ( m + 1 ) n ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 a n ( m + 1 ) ⋯ a n n ) \begin{pmatrix} \lambda_{1}& & & & a_{1(m+1)}&\cdots&a_{1n} \\ & \lambda_{1} & & & a_{2(m+1)}&\cdots&a_{2n}\\ & & \ddots & & \vdots& &\vdots \\ & & & \lambda_{1} & a_{m(m+1)}&\cdots&a_{mn}\\ 0 & 0 & \cdots & 0 & a_{(m+1)(m+1)}&\cdots&a_{(m+1)n} \\\vdots& \vdots& & \vdots& \vdots& &\vdots \\0&0& \cdots & 0&a_{n(m+1)}&\cdots&a_{nn}\\ \end{pmatrix} λ100λ100λ100a1(m+1)a2(m+1)am(m+1)a(m+1)(m+1)an(m+1)a1na2namna(m+1)nann
所以就有: P − 1 A P = ( λ 1 a 1 ( m + 1 ) ⋯ a 1 n λ 1 a 2 ( m + 1 ) ⋯ a 2 n ⋱ ⋮ ⋮ λ 1 a m ( m + 1 ) ⋯ a m n 0 0 ⋯ 0 a ( m + 1 ) ( m + 1 ) ⋯ a ( m + 1 ) n ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 a n ( m + 1 ) ⋯ a n n ) P^{-1}AP= \begin{pmatrix} \lambda_{1}& & & & a_{1(m+1)}&\cdots&a_{1n} \\ & \lambda_{1} & & & a_{2(m+1)}&\cdots&a_{2n}\\ & & \ddots & & \vdots& &\vdots \\ & & & \lambda_{1} & a_{m(m+1)}&\cdots&a_{mn}\\ 0 & 0 & \cdots & 0 & a_{(m+1)(m+1)}&\cdots&a_{(m+1)n} \\\vdots& \vdots& & \vdots& \vdots& &\vdots \\0&0& \cdots & 0&a_{n(m+1)}&\cdots&a_{nn}\\ \end{pmatrix} P1AP= λ100λ100λ100a1(m+1)a2(m+1)am(m+1)a(m+1)(m+1)an(m+1)a1na2namna(m+1)nann

3.减去 λ E \lambda E λE后,取行列式 :

P − 1 A P − λ E = ( λ 1 a 1 ( m + 1 ) ⋯ a 1 n λ 1 a 2 ( m + 1 ) ⋯ a 2 n ⋱ ⋮ ⋮ λ 1 a m ( m + 1 ) ⋯ a m n 0 0 ⋯ 0 a ( m + 1 ) ( m + 1 ) ⋯ a ( m + 1 ) n ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 a n ( m + 1 ) ⋯ a n n ) − λ E P^{-1}AP-\lambda E= \begin{pmatrix} \lambda_{1}& & & & a_{1(m+1)}&\cdots&a_{1n} \\ & \lambda_{1} & & & a_{2(m+1)}&\cdots&a_{2n}\\ & & \ddots & & \vdots& &\vdots \\ & & & \lambda_{1} & a_{m(m+1)}&\cdots&a_{mn}\\ 0 & 0 & \cdots & 0 & a_{(m+1)(m+1)}&\cdots&a_{(m+1)n} \\\vdots& \vdots& & \vdots& \vdots& &\vdots \\0&0& \cdots & 0&a_{n(m+1)}&\cdots&a_{nn}\\ \end{pmatrix} -\lambda E P1APλE= λ100λ100λ100a1(m+1)a2(m+1)am(m+1)a(m+1)(m+1)an(m+1)a1na2namna(m+1)nann λE
左边: P − 1 A P − λ E = P − 1 A P − λ P − 1 P = P − 1 ( A − λ E ) P P^{-1}AP-\lambda E=P^{-1}AP-\lambda P^{-1}P=P^{-1}(A-\lambda E)P P1APλE=P1APλP1P=P1AλEP
右边: ( λ 1 − λ ∗ ⋯ ∗ λ 1 − λ ∗ ⋯ ∗ ⋱ ⋮ ⋮ λ 1 − λ ∗ ⋯ ∗ 0 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 ∗ ⋯ ∗ ) \begin{pmatrix} \lambda_{1}-\lambda& & & & *&\cdots&* \\ & \lambda_{1}-\lambda & & & *&\cdots&*\\ & & \ddots & & \vdots& &\vdots \\ & & & \lambda_{1}-\lambda & *&\cdots&*\\ 0 & 0 & \cdots & 0 & *&\cdots&* \\\vdots& \vdots& & \vdots& \vdots& &\vdots \\0&0& \cdots & 0&*&\cdots&*\\ \end{pmatrix} λ1λ00λ1λ00λ1λ00 (为了方便,将后面的常数用“星号”代替)
即得: P − 1 ( A − λ E ) P = ( λ 1 − λ ∗ ⋯ ∗ λ 1 − λ ∗ ⋯ ∗ ⋱ ⋮ ⋮ λ 1 − λ ∗ ⋯ ∗ 0 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 ∗ ⋯ ∗ ) P^{-1}(A-\lambda E)P= \begin{pmatrix} \lambda_{1}-\lambda& & & & *&\cdots&* \\ & \lambda_{1}-\lambda & & & *&\cdots&*\\ & & \ddots & & \vdots& &\vdots \\ & & & \lambda_{1}-\lambda & *&\cdots&*\\ 0 & 0 & \cdots & 0 & *&\cdots&* \\\vdots& \vdots& & \vdots& \vdots& &\vdots \\0&0& \cdots & 0&*&\cdots&*\\ \end{pmatrix} P1AλEP= λ1λ00λ1λ00λ1λ00
最后取行列式得:
左边: ∣ P − 1 ( A − λ E ) P ∣ = ∣ P − 1 ∣ ∣ A − λ E ∣ ∣ P ∣ = ∣ A − λ E ∣ |P^{-1}(A-\lambda E)P|=|P^{-1}||A-\lambda E||P|=|A-\lambda E| P1AλEP=P1∣∣AλE∣∣P=AλE
右边:根据之前的tip 2得: ( λ 1 − λ ) m ( 一堆式子 ) (\lambda_{1}-\lambda)^{m}(一堆式子) (λ1λ)m(一堆式子)
即得: ∣ A − λ E ∣ = ( λ 1 − λ ) m ( 一堆式子 ) |A-\lambda E|=(\lambda_{1}-\lambda)^{m}(一堆式子) AλE=(λ1λ)m(一堆式子)
所以可以得到 λ 1 \lambda_{1} λ1 至少为m重根,为什么至少呢?因为有可能后面乘以的一堆式子中可以提取出若干个 ( λ 1 − λ ) (\lambda_{1}-\lambda) (λ1λ) 出来,所以用至少这个词。
到此为止,我们得到想证的 λ 1 \lambda_{1} λ1 的重数要≥m,命题成立。

到此结束~
我是煜神学长,考研我们一起加油!!!

关注TB店铺:KY煜神思维导图,了解考研数学提分利器思维导图

  • 20
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
Python面向对象编程(Object-Oriented Programming,简称OOP)是一种编程范式,它将数据和操作封装在对象中,通过对象之间的交互实现程序的设计和开发。下面是一些关键概念,帮助你更好地理解Python面向对象编程。 1. 类(Class):类是对象的蓝图或模板,描述了对象的属性和行为。它定义了对象的特征和方法。例如,我们可以定义一个名为"Car"的类来表示汽车,其中包含属性(如颜色、型号)和方法(如加速、刹车)。 2. 对象(Object):对象是类的实例,是具体的实体。通过实例化类,我们可以创建一个对象。例如,我们可以创建一个名为"my_car"的对象,它是基于"Car"类的实例。 3. 属性(Attribute):属性是对象的特征,用于描述对象的状态。每个对象都可以具有一组属性。例如,"Car"类的属性可以包括颜色、型号等。 4. 方法(Method):方法是对象的行为,用于定义对象的操作。每个对象都可以具有一组方法。例如,"Car"类的方法可以包括加速、刹车等。 5. 继承(Inheritance):继承是一种机制,允许我们创建一个新类(称为子类),从现有类(称为父类)继承属性和方法。子类可以扩展或修改父类的功能。继承可以实现代码重用和层次化设计。 6. 多态(Polymorphism):多态是一种特性,允许不同类的对象对同一方法做出不同的响应。多态提高了代码的灵活性和可扩展性。 7. 封装(Encapsulation):封装是一种将数据和操作封装在对象中的机制,隐藏了对象的内部实现细节,只暴露必要的接口给外部使用。这样可以保护数据的安全性,提供了更好的模块化和代码复用性。 通过理解这些概念,你可以更好地掌握Python面向对象编程。在实践中,你可以使用类来创建对象,操作对象的属性和调用对象的方法,通过继承和多态实现代码的灵活性和可扩展性,通过封装保护数据的安全性和提高代码的可维护性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值