深度学习Day-08:YOLOv5-C3模块实现

 🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客
 🍖 原作者:[K同学啊 | 接辅导、项目定制]

一、 基础配置

  • 语言环境:Python3.8
  • 编译器选择:Pycharm
  • 数据集:参考深度学习Day-03(天气识别数据集)
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

二、 前期准备 

1.设置GPU

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

根据个人设备情况,选择使用GPU/CPU进行训练,在Pycharm中需要添加print命令来查看是否使用了GPU ,若GPU可用则输出

cuda

该代码片段中加入了 warnings.filterwarnings("ignore")用于忽略代码运行中不必要的警告信息。

2. 导入数据

本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据集合,并设置对应文件目录,以供后续学习过程中使用。

*考虑到Day-08及Day-09均为YOLOv5的实现,故这里对文件夹做了一定的调整,需使用到os库中的API完成对data数据中的文件提取。

运行下述代码:

import os,pathlib

data_dir = '../data'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
class_names = [str(path).split(os.path.sep)[-1] for path in data_paths]
print(class_names)

得到如下输出:

['cloudy', 'rain', 'shine', 'sunrise']

接下来,我们通过transforms.Compose对整个数据集进行预处理:

  • 第一步:将输入图片resize成统一尺寸,即[224, 224]
  • 第二步:转换为tensor,并归一化到[0,1]之间
  • 第三步:转换为标准正态分布(高斯分布),使模型更容易收敛
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("../data",transform=train_transforms)
print(total_data)

得到如下输出:

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ../data
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               RandomHorizontalFlip(p=0.5)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

接下来,为了方便模型进行训练和推理,映射关系可以将类别标签转换为模型可以理解的数字格式:

total_data.class_to_idx

得到如下输出:

{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3. 划分数据集

 此处数据集需要做按比例划分的操作:

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

根据代码所示,本文将原数据集按照8:2的比例进行了划分,接着根据划分得到的训练集和验证集对数据集进行包装:

batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)

并通过:

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出测试数据集的数据分布情况:

Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

Tips:win需要采用num_workers=0的模式。

二、手动搭建包含C3模块的模型

1.模型搭建

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))


class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()

        # 卷积模块
        self.Conv = Conv(3, 32, 3, 2)

        # C3模块1
        self.C3_1 = C3(32, 64, 3, 2)

        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )

    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x


device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = model_K().to(device)
print(model)

可以得到如下输出:

Using cuda device
model_K(
  (Conv): Conv(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_1): C3(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (1): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (2): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=802816, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

 2.查看模型信息

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))

得到如下输出:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 112, 112]             864
       BatchNorm2d-2         [-1, 32, 112, 112]              64
              SiLU-3         [-1, 32, 112, 112]               0
              Conv-4         [-1, 32, 112, 112]               0
            Conv2d-5         [-1, 32, 112, 112]           1,024
       BatchNorm2d-6         [-1, 32, 112, 112]              64
              SiLU-7         [-1, 32, 112, 112]               0
              Conv-8         [-1, 32, 112, 112]               0
            Conv2d-9         [-1, 32, 112, 112]           1,024
      BatchNorm2d-10         [-1, 32, 112, 112]              64
             SiLU-11         [-1, 32, 112, 112]               0
             Conv-12         [-1, 32, 112, 112]               0
           Conv2d-13         [-1, 32, 112, 112]           9,216
      BatchNorm2d-14         [-1, 32, 112, 112]              64
             SiLU-15         [-1, 32, 112, 112]               0
             Conv-16         [-1, 32, 112, 112]               0
       Bottleneck-17         [-1, 32, 112, 112]               0
           Conv2d-18         [-1, 32, 112, 112]           1,024
      BatchNorm2d-19         [-1, 32, 112, 112]              64
             SiLU-20         [-1, 32, 112, 112]               0
             Conv-21         [-1, 32, 112, 112]               0
           Conv2d-22         [-1, 32, 112, 112]           9,216
      BatchNorm2d-23         [-1, 32, 112, 112]              64
             SiLU-24         [-1, 32, 112, 112]               0
             Conv-25         [-1, 32, 112, 112]               0
       Bottleneck-26         [-1, 32, 112, 112]               0
           Conv2d-27         [-1, 32, 112, 112]           1,024
      BatchNorm2d-28         [-1, 32, 112, 112]              64
             SiLU-29         [-1, 32, 112, 112]               0
             Conv-30         [-1, 32, 112, 112]               0
           Conv2d-31         [-1, 32, 112, 112]           9,216
      BatchNorm2d-32         [-1, 32, 112, 112]              64
             SiLU-33         [-1, 32, 112, 112]               0
             Conv-34         [-1, 32, 112, 112]               0
       Bottleneck-35         [-1, 32, 112, 112]               0
           Conv2d-36         [-1, 32, 112, 112]           1,024
      BatchNorm2d-37         [-1, 32, 112, 112]              64
             SiLU-38         [-1, 32, 112, 112]               0
             Conv-39         [-1, 32, 112, 112]               0
           Conv2d-40         [-1, 64, 112, 112]           4,096
      BatchNorm2d-41         [-1, 64, 112, 112]             128
             SiLU-42         [-1, 64, 112, 112]               0
             Conv-43         [-1, 64, 112, 112]               0
               C3-44         [-1, 64, 112, 112]               0
           Linear-45                  [-1, 100]      80,281,700
             ReLU-46                  [-1, 100]               0
           Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------

 参数量为:80,320,536

三、 训练模型 

1. 编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.正式训练

import copy

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数

epochs = 20

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))

# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

得到如下输出:

Epoch: 1, Train_acc:68.8%, Train_loss:1.591, Test_acc:83.6%, Test_loss:0.419, Lr:1.00E-04
Epoch: 2, Train_acc:80.0%, Train_loss:0.581, Test_acc:86.2%, Test_loss:0.386, Lr:1.00E-04
Epoch: 3, Train_acc:87.8%, Train_loss:0.318, Test_acc:87.1%, Test_loss:0.390, Lr:1.00E-04
Epoch: 4, Train_acc:92.3%, Train_loss:0.267, Test_acc:90.2%, Test_loss:0.324, Lr:1.00E-04
Epoch: 5, Train_acc:93.1%, Train_loss:0.225, Test_acc:89.3%, Test_loss:0.309, Lr:1.00E-04
Epoch: 6, Train_acc:94.1%, Train_loss:0.198, Test_acc:90.2%, Test_loss:0.319, Lr:1.00E-04
Epoch: 7, Train_acc:95.4%, Train_loss:0.140, Test_acc:90.7%, Test_loss:0.321, Lr:1.00E-04
Epoch: 8, Train_acc:97.2%, Train_loss:0.080, Test_acc:89.8%, Test_loss:0.283, Lr:1.00E-04
Epoch: 9, Train_acc:98.3%, Train_loss:0.051, Test_acc:89.3%, Test_loss:0.317, Lr:1.00E-04
Epoch:10, Train_acc:98.6%, Train_loss:0.052, Test_acc:89.3%, Test_loss:0.318, Lr:1.00E-04
Epoch:11, Train_acc:98.0%, Train_loss:0.055, Test_acc:90.2%, Test_loss:0.408, Lr:1.00E-04
Epoch:12, Train_acc:98.8%, Train_loss:0.034, Test_acc:92.0%, Test_loss:0.348, Lr:1.00E-04
Epoch:13, Train_acc:99.0%, Train_loss:0.042, Test_acc:89.3%, Test_loss:0.252, Lr:1.00E-04
Epoch:14, Train_acc:97.8%, Train_loss:0.075, Test_acc:88.0%, Test_loss:0.523, Lr:1.00E-04
Epoch:15, Train_acc:97.8%, Train_loss:0.066, Test_acc:90.2%, Test_loss:0.499, Lr:1.00E-04
Epoch:16, Train_acc:98.4%, Train_loss:0.072, Test_acc:90.7%, Test_loss:0.496, Lr:1.00E-04
Epoch:17, Train_acc:97.8%, Train_loss:0.079, Test_acc:90.2%, Test_loss:0.382, Lr:1.00E-04
Epoch:18, Train_acc:99.1%, Train_loss:0.021, Test_acc:89.8%, Test_loss:0.366, Lr:1.00E-04
Epoch:19, Train_acc:99.8%, Train_loss:0.008, Test_acc:92.0%, Test_loss:0.321, Lr:1.00E-04
Epoch:20, Train_acc:98.8%, Train_loss:0.042, Test_acc:91.1%, Test_loss:0.389, Lr:1.00E-04
Done

四、 结果可视化

1. Loss&Accuracy

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

得到可视化的结果为: 

2. 模型评估

将模型调至评估模式:

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
print(epoch_test_acc, epoch_test_loss,epoch_test_acc)

得到如下输出:

0.9066666666666666 0.29367532026190657 0.9066666666666666

观察得到和前文中一致。

五、个人理解

本项目要求为实现YOLOv5-C3模块的搭建过程,现在根据原文中搭建模型的代码及问题进行对应的解释说明:

1.回答问题

Q:是否可以尝试通过增加/调整C3模块与Conv模块来提高准确率?

A:首先,调整C3模块和Conv模块是一种常见提高准确率的方法,通过调整Conv模块的参数、卷积核大小等,可以使网络更好地捕捉输入数据的特征;然而,需要注意的是,调整模型结构并不总是能够带来准确率的显著提升。在进行调整时,需要进行充分的实验和评估,以确保调整后的模型在验证集或测试集上获得更好的性能。

2.代码说明

def autopad(k, p=None):
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
    return p

定义了一个名为autopad的函数,用于自动计算卷积操作的padding参数,使得输入和输出的尺寸相同。其中,k代表卷积核的大小,p表示padding的大小,如果没有给出p参数,则自动计算k的一半作为p。

class Conv(nn.Module):
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

定义了一个名为Conv的类,用于构建卷积层。在初始化方法中,参数c1表示输入通道数,c2表示输出通道数,k表示卷积核大小,s表示步长大小,p表示 padding大小,g表示分组卷积的组数,act表示是否使用激活函数。在forward方法中,先执行卷积操作、BatchNorm,最后再使用激活函数。

class Bottleneck(nn.Module):
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):
        super().__init__()
        c_ = int(c2 * e)
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

定义了一个名为Bottleneck的类,用于构建标准的瓶颈块。在初始化方法中,参数c1表示输入通道数,c2表示输出通道数,shortcut表示是否使用跳跃连接,g表示分组卷积的组数,e表示瓶颈块中间层的扩张因子。在forward方法中,先执行两次卷积运算,然后进行跳跃连接或者直接返回结果。

class C3(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__()
        c_ = int(c2 * e)
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

定义了一个名为C3的类,用于构建Bottleneck模块。在初始化方法中,参数c1表示输入通道数,c2表示输出通道数,n表示模块中使用的瓶颈块数量,shortcut表示是否使用跳跃连接,g表示分组卷积的组数,e表示瓶颈块中间层的扩张因子。在forward方法中,先执行卷积操作,然后进行两次不同的卷积运算,最后使用跳跃连接。

class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        
        self.Conv = Conv(3, 32, 3, 2) 
        
        self.C3_1 = C3(32, 64, 3, 2)
        
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

定义了一个名为model_K的类,用于构建整个模型。在初始化方法中,分别创建了卷积层、C3模块和全连接层,并在forward方法中按照顺序执行。将输入数据传入卷积层得到卷积结果,然后再将其传入C3模块得到特征提取结果,最后通过flatten操作将特征结果变成一维向量,传入全连接层进行分类。

  • 20
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值