图像梯度算的是什么?
图像梯度计算的是图像变化的速度。对于图像的边缘部分,其灰度值变化较大,梯度值也较大;相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小。一般情况下,图像梯度计算的是图像的边缘信息。严格来讲,图像梯度计算需要求导数,但是图像梯度一般通过计算像素值的差来得到梯度的近似值(近似导数值)。
Sobel理论基础
Sobel 算子是一种离散的微分算子,该算子结合了高斯平滑和微分求导运算。该算子利用局部差分寻找边缘,计算所得的是一个梯度的近似值。下图为Sobel算子示例:
在 OpenCV 内,使用函数 cv2.Sobel()实现 Sobel 算子运算,其语法形式为:
dst = cv2.Sobel( src, ddepth, dx, dy[,ksize[, scale[, delta[, borderType]]]] )
式中:
dst 代表目标图像。
src 代表原始图像。
ddepth 代表输出图像的深度。
dx 代表 x 方向上的求导阶数。
dy 代表 y 方向上的求导阶数。
ksize 代表 Sobel 核的大小。该值为-1 时,则会使用 Scharr 算子进行运算。
scale 代表计算导数值时所采用的缩放因子,默认情况下该值是 1,是没有缩放的。
delta 代表加在目标图像 dst 上的值,该值是可选的,默认为 0。
borderType 代表边界样式。
在实际操作中,计算梯度值可能会出现负数。通常处理的图像
是 8 位图类型,如果结果也是该类型,那么所有负数会自动截断为 0,发生信息丢失。所以,为了避免信息丢失,我们在计算时使用更高的数据类型 cv2.CV_64F,再通过取绝对值将其映射为 cv2.CV_8U(8 位图)类型。
故此我们还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:
dst = convertScaleAbs(src[, dst[, alpha[, beta]]])
dst 代表处理结果。
src 代表原始图像。
alpha 代表调节系数,该值是可选值,默认为 1。
beta 代表调节亮度值,该值是默认值,默认为 0。
示例:
使用函数 cv2.Sobel()获取图像水平方向的完整边缘信息。
import cv2
o = cv2.imread('sobel4.bmp',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(o,cv2.CV_64F,1,0)
sobelx = cv2.convertScaleAbs(sobelx) # 转回uint8
cv2.imshow("original",o)
cv2.imshow("x",sobelx)
cv2.waitKey()
cv2.destroyAllWindows()
运行结果:
使用函数 cv2.Sobel()获取图像垂直方向的边缘信息。
import cv2
o = cv2.imread('sobel4.bmp',cv2.IMREAD_GRAYSCALE)
sobely = cv2.Sobel(o,cv2.CV_64F,0,1)
sobely = cv2.convertScaleAbs(sobely)
cv2.imshow("original",o)
cv2.imshow("y",sobely)
cv2.waitKey()
cv2.destroyAllWindows()
运行结果:
计算函数 cv2.Sobel()在水平、垂直两个方向叠加的边缘信息。
import cv2
o = cv2.imread('sobel4.bmp',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(o,cv2.CV_64F,1,0)
sobely = cv2.Sobel(o,cv2.CV_64F,0,1)
sobelx = cv2.convertScaleAbs(sobelx) # 转回uint8
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv2.imshow("original",o)
cv2.imshow("xy",sobelxy)
cv2.waitKey()
cv2.destroyAllWindows()
运行结果:
从程序可以看出,本例中首先分别计算 x 方向的边缘、y 方向的边缘,接下来使用函数cv2.addWeighted()对两个方向的边缘进行叠加。在最终的叠加边缘结果中,同时显示两个方向的边缘信息。