自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 【计算机科研入门合集】

目前本人研一下学期,写博客主要督促自己学习,总结科研当中学习、搜集到的内容,也作为自己的学习笔记;发布在博客上也供各位和我一样的科研小白共同学习。科研路漫漫,给自己加油!

2024-06-21 11:55:01 929

原创 【数据可信流通】

本次笔记主要是隐私计算中数据可流通性的相关基础知识。

2024-03-20 10:54:04 671 1

原创 【李宏毅机器学习第八周学习笔记】

语音识别,需要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别;自然语言处理,要依次读取各个单词,识别某段文字的语义,这些场景都有一个特点,就是与时间序列有关,并且输入的序列数据长度不是固定不变的。在现实生活中,例如对一个演讲进行语音识别,演讲者每讲一句话的时间几乎都不太相同,而识别演讲者的讲话内容还必须要按照讲话的顺序进行识别。因此需要有一种能力更强的模型:该模型具有一定的记忆能力,能够按时序依次处理任意长度的信息。

2023-07-16 16:16:26 137 1

原创 【李宏毅机器学习第七周学习笔记】

CNN是一种前馈神经网络,是当图片处理的主流技术,可以处理经过放大、缩小、旋转过的图片。对于图像处理而言有以下几关键技术的应用,第一是物体定位:预测包含主要物体的图像区域,以便识别区域中的物体;第二是物体识别:针对分割好的目标进行分类;第三是目标分割:将图像目标分割出来,针对图像上的像素进行归属,例中如人类、建筑物等;第四是关键点检测:从图像中检测目标物体上某关键点的位置,例如人类面部关键点信息。

2023-07-09 16:30:51 140 1

原创 李宏毅机器学习第六周学习笔记

卷积神经网络是一种前馈型神经网络, 它的出现是受到了生物处理过程的启发,因为神经元之间的连接模式类似于动物的视觉皮层组织。现在,CNN 已经成为众多科学领域的研究热点之一, 特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。可应用于图像分类,目标识别,目标检测,语义分割等等。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;

2023-07-02 17:56:08 139 1

原创 【李宏毅机器学习第五周学习笔记】

宝可梦与数码宝贝的分类中要将所有的数据收集齐,那么将需要非常多的时间,并且也不一定能够完全收集齐,因此如果能够使用部分数据得到的模型对所有数据进行分类,在没有所有数据的情况下,也能够应用于所有数据的分类中。为了判断用部分数据训练出来的模型是否能够运用于所有的数据中,需要判断所有数据中的loss与部分数据中的loss差是否超过某一个假定的值,那么就需要引入一个H,它是一个假设空间,在这个假设空间有一系列的h。

2023-06-30 21:38:16 219

原创 李宏毅机器学习第四周学习笔记

在机器学习的训练模型过程中,为了得到更好的结果需要分析loss的变化,当训练集中结果更好而测试集中结果却变现得更差,有可能是过拟合导致的,但是并不是每次这样的结果都是过拟合的现象,就需要从更多的方面考虑因素,比如optimization失败、bias不合理等。当遇到梯度下降中梯度为零的点时,或许会觉得就是局部最小值,但是也有可能是鞍点,可以通过计算来判断是最小值还是鞍点。

2023-06-17 17:02:35 215 1

原创 李宏毅机器学习第三周学习笔记

预测神奇宝贝战斗力值当中,依旧是按照机器学习的三个步骤进行预测,其中使用到了梯度下降的方法,在梯度下降当中,要使损失函数L(w)的值减小,只需让回归系数向与当前位置偏导数符号相反的方向更新即可。当寻找一个更优的function时,并不是越复杂越好,过于复杂时,容易出现过拟合的现象,也就是在训练集上表现好,而在测试集中表现差,相对的欠拟合,是在训练集上表现差。分类问题是很常见的一类问题,可以用于垃圾邮件的分类、医疗诊断、手写文字的辨识、人脸识别等。

2023-06-09 22:36:34 1125

原创 李宏毅机器学习第二次学习笔记

在上周的学习中主要学习了机器学习的相关概念与机器学习的学习过程,包含三个步骤:定义一个函数、定义损失函数、最优化。但如果需要达到更加优秀的结果则需要寻找一个更优的损失函数,在经过一系列过程之后得到了一个更加强大的 Loss 函式 Sigmoid Function。当有多个Feature,时,就需要做一些变化,例如用 j 来代表 Feature 的编号,下面将详细介绍该过程,并将本周学习内容一起撰写如下。

2023-06-03 11:57:54 1264

原创 机器学习概述

本周主要是学习了机器学习与深度学习的概念,在机器学习的步骤中,首先是猜测函式的关系,其次是从训练数据中定义损失函数,以找出合适的参数,最后是对函式进行优化,使得损失最小、模型更加准确。机器学习即Machine Learning,目的是让计算机模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断完善自身的性能。简单来说,机器学习就是人们通过大量的数据来训练机器。

2023-05-25 21:12:25 296 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除