数学建模之层次分析法

简单介绍

根据百度百科介绍,层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

说简单点就是,你在做选择时给各种方案进行打分,然后做出决策这么一个过程。
所以说,层次分析法适合一些需要主观来决策的问题建模,对于已经有相应评分的问题,可以使用TOPSIS来解决。

基本步骤

层次分析法的基本步骤如下面的流程图所示。大体上分为五大部分,

  • 建立层次结构
  • .填写判断矩阵
  • 一致性检验
  • 根据判断矩阵计算权重
  • 计算最后的得分

下面来举一个计算综测的例子,作为一个成熟的大学生,你要学会自己计算综测了
假设在一所不需要考试不需要考试不需要考试的A大学,有三名同学分别叫小明,小美,小王。班主任小小何需要结合这三名同学的平时表现(德育),聪明程度(智育)以及体育成绩(体育)来给这三名同学打分,从而选出本年度的三好学生。
在上面这个例子中,有个关键词叫“打分”,这很明显就是一个主观问题,而选三好学生则是一个决策问题。
这里假设小小何十分擅长使用层次分析法解决问题,下面请欣赏小小何的建模过程。

首先,小小何画出了这么一张层次结构图

在这里插入图片描述

其次,小小何需要构造判断矩阵

这里有几个问题需要说明:
其一,什么是判断矩阵,判断矩阵,顾名思义就是将横纵坐标的因素两两比较,得到一个填满数字的表/矩阵
其二,根据什么构造判断矩阵,我们需要借助一个评判标准来填写判断矩阵,而下面这张表就是我们的评判标准。在这里插入图片描述
其三,要构造多少个判断矩阵,你猜,在本例中,我们首先要对准则层的三个因素(德育,智育,体育)构造一个判断矩阵
在该矩阵中,①值为2,说明德育相较于智育,其重要性介于同等重要和稍微重要之间,②值为4,说明德育相较于体育,其重要性介于稍微重要和明显重要之间,③值为2,说明智育相较于体育,其重要性介于同等重要和稍微重要之间。
注意:判断矩阵都是关于对角线两侧的数都是互为倒数的,所以只要填写右上方/左下方的数字即可。填写的数字介于1到9之间且数字要为整数。
在这里插入图片描述
然后我们需要根据准则层的三个因素,依次构造三个判断矩阵
下面这三个判断矩阵是三名同学分别在德育,智育,体育方面的比较。作为一个成熟的大学生,你要学会自己构造判断矩阵了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所以,我们需要构造的判断矩阵的个数应该是准则层因素的个数再加一。怎么构造就不用我多说了吧,自己主观打分就行。

接下来,小小何需要结合判断矩阵,进行一致性检验

注意:不是所有的判断矩阵都需要进行一致性检验
说到一致性检验,就需要了解一个概念:一致矩阵
还记得我们第一次构造的判断矩阵吗,观察下图可以发现,矩阵的每行都成一个比例关系,这里第一行乘以1/2得到第二行,第二行乘以1/2得到第三行,这就是成比例关系,而这个判断矩阵就是一致矩阵。在这里插入图片描述
而一致性检验是留给那些不是一致矩阵的判断矩阵的,所以,如果你构造的判断矩阵恰好是一致矩阵,那就不必进行如下操作了。
对于不是一致矩阵的判断矩阵,一致性检验的步骤也很简单,见下图(图源:清风数学建模课件)在这里插入图片描述
若判断矩阵未通过一致性检验,则需要重新修正(按照每行成比例修正即可),步骤虽然简单,但是怎么计算呢?待会代码部分会有说明,先接着往下看。

下面,小小何根据通过一致性检验的四个判断矩阵,计算权重

其实,有三种方法可以计算权重,分别是算术平均法,几何平均法和特征值法,这里我以算术平均法为例,计算过程如下图所示
在这里插入图片描述
接下来只需要按照此方法对另外三个判断矩阵进行权重计算,然后填入下方表格即可。
在这里插入图片描述

终于到最后一步了,小小何根据得到的权重表计算最后的得分

当你填完整个权重表后,就可以按照下图所示的方法来计算最后的得分(图源:清风数学建模课件)在这里插入图片描述
恭喜你已经看完整个层次分析法的建模流程,相信聪明的你应该能计算出最后的得分结果。

完整代码

下面的代码,是根据清风老师编写的代码略作改动得到的。

%% 需要说明的是,只有非一致矩阵的判断矩阵才需要进行一致性检验。
%% 如果你的判断矩阵本身就是一个一致矩阵,那么就没有必要进行一致性检验。
disp('请输入判断矩阵A')
A=input('A=');
[n,n] = size(A);
% % % % % % % % % % % % %下面是计算一致性比例CR的环节% % % % % % % % % % % % %
[V,D] = eig(A);
Max_eig = max(max(D));
CI = (Max_eig - n) / (n-1);
RI=[0 0.0001 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];  %注意哦,这里的RI最多支持 n = 15
% 这里n=2时,一定是一致矩阵,所以CI = 0,我们为了避免分母为0,将这里的第二个元素改为了很接近0的正数
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);
if CR<0.10
    disp('因为CR<0.10,所以该判断矩阵A的一致性可以接受!');
else
    disp('注意:CR >= 0.10,因此该判断矩阵A需要进行修改!');
end
% % % % % % % % % % % % %方法1: 算术平均法求权重% % % % % % % % % % % % %
Sum_A = sum(A);
SUM_A = repmat(Sum_A,n,1);
Stand_A = A ./ SUM_A;
disp('算术平均法求权重的结果为:');
disp(sum(Stand_A,2)./n)
% % % % % % % % % % % % %方法2: 几何平均法求权重% % % % % % % % % % % % %
Prduct_A = prod(A,2);
Prduct_n_A = Prduct_A .^ (1/n);
disp('几何平均法求权重的结果为:');
disp(Prduct_n_A ./ sum(Prduct_n_A))
% % % % % % % % % % % % %方法3: 特征值法求权重% % % % % % % % % % % % %
[V,D] = eig(A);
Max_eig = max(max(D));
[r,c]=find(D == Max_eig , 1);
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) )


% % 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中

好了,以上就是层次分析法的主要内容了,还有其他扩展模型我们下次再讨论。
最后最后,推荐一下清风数学建模的视频课程,清风老师yyds~

层次分析法(Analytic Hierarchy Process,AHP)是一种系统性的层次结构分析方法,可以用于处理多目标决策问题。下面是使用AHP进行画图及比较矩阵的步骤: 1.建立层次结构:将问题分解为若干层次,确定层次之间的关系,形成一个层次结构。 2.构造比较矩阵:对于同一层次的各个因素进行两两比较,得到一个比较矩阵。比较矩阵的元素为两个因素之间的相对重要性,通常采用1-9的尺度进行评价,其中1表示两个因素同等重要,9表示一个因素比另一个因素重要程度是另一个因素的9倍。 3.计算权重:通过计算比较矩阵的特征向量,可以得到每个因素的权重,即其在整个层次结构中的重要程度。特别地,对于AHP来说,特征向量需要进行归一化处理,使其元素和为1。 4.一致性检验:检验比较矩阵的一致性,即比较矩阵是否符合一定的数学规律。如果比较矩阵的一致性不好,需要进行调整,直到比较矩阵的一致性得到满意的结果。 5.绘制层次结构图:根据层次结构及各因素的权重,绘制出层次结构图。 6.进行灵敏度分析:对于各因素的权重进行不同的假设,分析结果的变化情况,以得到对于不同假设情况下的最优决策。 需要注意的是,AHP方法在实际应用中需要进行多次比较矩阵的构造,每次构造的比较矩阵都需要进行一致性检验。此外,选择合适的尺度和正确的比较是比较矩阵构造的关键。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值