Happy Necklace dp 递推 矩阵快速幂

在这里插入图片描述在这里插入图片描述

  • 当满足素数2和素数3的条件后,下一个素数区间5乃至之后的都会被满足。
  • 考虑能否从f[n - 1]转换到f[n],考虑第i - 1位,如果后面加红色一定满足条件,所以f[n]先是加上f[n - 1]
  • 如果最后加蓝色,上一位一定是红色,且上上位也得是红色
  • 所以f[n] = f[n - 1] + f[n - 3]
  • n的范围太大,所以无法将递推的结果保存起来,所以矩阵快速幂
#include <iostream>
#include <cstring>

using namespace std;

typedef long long ll;

const int N = 3;
const ll mod = 1e9 + 7;

ll n;

void mul(ll c[], ll a[], ll b[][N])
{
    ll temp[N] = {0};
    for (int i = 0; i < N; i ++ )
        for (int j = 0; j < N; j ++ )
            temp[i] = (temp[i] + a[j] * b[j][i] % mod) % mod;
    memcpy(c, temp, sizeof temp);
}

void mul(ll c[][N], ll a[][N], ll b[][N])
{
    ll temp[N][N] = {0};
    for (int i = 0; i < N; i ++ )
        for (int j = 0; j < N; j ++ )
            for (int k = 0; k < N; k ++ )
                temp[i][j] = (temp[i][j] + a[i][k] * b[k][j] % mod) % mod;
    
    memcpy(c, temp, sizeof temp);
}

int main()
{
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    
    int _;
    cin >> _;
    
    while (_ -- )
    {
        cin >> n;
        
        if (n == 2)
        {
            cout << 3 << endl;
            continue;
        }
        if (n == 3)
        {
            cout << 4 << endl;
            continue;
        }

        n -= 3;
        ll f1[N] = {4, 3, 2};
        
        ll a[N][N] = {
            {1, 1, 0},
            {0, 0, 1},
            {1, 0, 0}
        };
        
        // wa
//        ll a[N][N] = {
//            {1, 0, 1},
//            {1, 0, 0},
//            {0, 1, 0}
//        };
        
        while (n)
        {
            if (n & 1) mul(f1, f1, a);
            mul(a, a, a);
            n >>= 1;
        }
        
        cout << f1[0] % mod << endl;
    }
    
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值