定义
若一个整数无法被除了1和它自身之外的任何自然数整除,则称该数为质数(素数),否则称该正整数为合数
在整个自然数集合中,质数的数量不多,分布比较稀疏,对于一个足够大的整数N,不超过N的质数大约有 N / l n N N / lnN N/lnN个,即每lnN个数中大约有1个质数
质数的判定
1、试除法
若一个正整数N为合数,则存在一个能整除N的数T,其中 2 ≤ T ≤ N 2 \leq T \leq \sqrt{N} 2≤T≤N
我们需要特判0和1这两个整数,它们既不是质数,也不是合数
bool is_prime(int n) {
if (n < 2) return false;
for (int i = 2; i <= sqrt(n); ++ i)
if (n % i == 0) return false;
return true;
}
质数的筛选
给定一个整数N,求出1~N之间的所有质数,称为质数的筛选问题
1、Eratosthenes筛法
Eratosthenes筛法基于这样的想法:任意整数x的倍数 2x,3x,…都不是质数
我们可以从2开始,由小到大扫描每个数x,把它的倍数 2x, 3x, …, ⌊ N / x ⌋ ∗ x \lfloor N / x \rfloor * x ⌊N/x⌋∗x标记为合数。当扫描到一个数时,若它尚未被标记,则它不能被2~x - 1之间的任何数整除,该数就是质数
另外,我们可以发现,2和3都会把6标记为合数。实际上,小于 x 2 x^2 x2的x的倍数在扫描更小的数时就已经被标记过了。因此,我们可以对Eratosthenes筛法进行优化,对于每个数x,我们只需要从 x 2 x^2 x2开始,把 x 2 x^2 x2, (x + 1) * x, … , ⌊ N / x ⌋ ∗ x \lfloor N / x \rfloor * x ⌊N/x⌋∗x 标记为合数即可
void primes(int n) {
memset(v, 0, sizeof v);
for (int i = 2; i <= n; ++ i) {
if (v[i]) continue;
cout << i << endl;
for (int j = i; j <= n / i; ++ j) v[i * j] = 1;
}
}
Eratosthenes筛法的时间复杂度为 O ( ∑ 质数 p ≤ N N P ) = O ( N l o g l o g N ) O(\sum_{质数p \leq N} \frac{N}{P})=O(NloglogN) O(∑质数p≤NPN)=O(NloglogN),效率已经非常接近于线性,是算法竞赛中最常用的质数筛法
2、线性筛法
即使在优化后(从 x 2 x^2 x2开始),Eratosthenes筛法仍然会重复标记合数。例如12既会被2又会被3标记,在标记2的倍数时,12 = 6 * 2,在标记3的倍数时,12 = 4 * 3。其根本原因是我们没有确定出唯一的产生12的方式
线性筛法通过“从大到小累积质因子”的方式标记每个合数,即让12只有3 * 2 * 2一种产生方式,设数组v记录每个数的最小质因子,我们按照以下步骤维护v
1、依次考虑2~N之间的每一个数i
2、若 v[i] = i,说明i是质数,把它保存下来
3、扫描不大于v[i]的每个质数p,令v[i * p] = p。也就是在i的基础上累积一个质因子p,因为
p
≤
v
[
i
]
p \leq v[i]
p≤v[i],所以p就是合数i * p的最小质因子
每个合数i * p只会被它的最小质因子p筛一次,时间复杂度为 O ( N ) O(N) O(N)
下面例题一中提供了线性筛法的另一种写法
int v[N], primes[N];
void primes(int n) {
memset(v, 0, sizeof v); // 最小质因子
int m = 0; // 质数数量
for (int i = 2; i <= n; ++ i) {
if (v[i] == 0) { // i是质数
v[i] = i;
primes[m ++ ] = i;
}
// 给当前的数i乘上一个质因子
for (int j = 0; j < m; ++ j) {
// i有比primes[j]更小的质因子,或者超出n的范围,停止循环
if (primes[j] > v[i] || primes[j] > n / i) break;
// primes[j]是合数i * primes[j]的最小质因子
v[i * primes[j]] = primes[j];
}
}
for (int i = 0; i < m; ++ i) cout << primes[i] << endl;
}
质因数分解
1、算术基本定理
任何一个大于1的正整数都能唯一分解为有限个质数的乘积,可写作:
N
=
p
1
c
1
p
2
c
2
.
.
.
p
m
c
m
N=p_1^{c_1}p_2^{c_2}...p_m^{c_m}
N=p1c1p2c2...pmcm
其中,c_i都是正整数,p_i都是质数,且满足
p
1
<
p
2
<
.
.
.
<
p
m
p_1<p_2<...<p_m
p1<p2<...<pm
2、试除法
结合质数判定的“试除法”和质数筛选的“Eratosthenes筛法“,我们可以扫描 2 ~ ⌊ N ⌋ \lfloor \sqrt{N} \rfloor ⌊N⌋的每个数d,若d能整除N,则从N中除掉所有的因子d,同时累积除去的d的个数
因为一个合数的因子一定在扫描到这个合数之前就从N中被除掉了,所以在上述过程中能整除N的一定是质数。最终就得到了质因数分解的结果,易知时间复杂度为 O ( ⌊ N ⌋ ) O(\lfloor \sqrt{N} \rfloor) O(⌊N⌋)
特别地,若N没有被任何 2 ~ ⌊ N ⌋ \lfloor \sqrt{N} \rfloor ⌊N⌋的数整除,则N是质数,无需分解
void divide(int n) {
m = 0;
for (int i = 2; i <= sqrt(n); ++ i) {
if (n % i == 0) {
p[m] = i; c[m] = 0;
while (n % i == 0) n /= i, c[m] ++ ;
m ++ ;
}
}
// n是质数
if (n > 1) {
p[m] = n; c[m ++ ] = 1;
}
for (int i = 0; i < m; ++ i)
cout << p[i] << '^' << c[i] << endl;
}
AcWing 196. 质数距离
题意 :
- 给定两个整数 L 和 U,你需要在闭区间 [L,U] 内找到距离最接近的两个相邻质数 C1 和 C2(即 C2−C1 是最小的),如果存在相同距离的其他相邻质数对,则输出第一对。
- 同时,你还需要找到距离最远的两个相邻质数 D1 和 D2(即 D1−D2 是最大的),如果存在相同距离的其他相邻质数对,则输出第一对。
- 1≤L<U≤2^{31}−1
- 每行输入两个整数 L 和 U,其中 L 和 U 的差值不会超过 10^6。
思路 :
- L,R的范围很大,任何已知算法都无法在规定时间内生成[1, R]中的所有质数。但是R - L的值很小,并且任何一个合数n必定包含一个不超过 n \sqrt n n的质因子
- 所以,我们只需要用筛法求出2~ R \sqrt R R之间的所有质数。对于每个质数p,把[L, R]中能被p整除的数标记,即标记i * p( ⌈ L p ⌉ ≤ i ≤ ⌊ R p ⌋ \lceil \frac{L}{p} \rceil \leq i \leq \lfloor \frac{R}{p} \rfloor ⌈pL⌉≤i≤⌊pR⌋)为合数
- 最终所有未被标记的数就是[L, R]中的质数。对相邻的质数两两比较,找出差最大的即可
- 时间复杂度为 O ( ∑ 质数 p ≤ R R − L p ) = O ( R l o g l o g R + ( R − L ) l o g l o g R ) O(\sum_{质数p \leq \sqrt{R}} \frac{R-L}{p})=O(\sqrt{R}loglog\sqrt{R}+(R-L)loglogR) O(∑质数p≤RpR−L)=O(RloglogR+(R−L)loglogR)
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10, M = 5e4 + 10;
int primes[N], cnt;
bool st[N];
void get_primes() {
memset(st, 0, sizeof st);
for (int i = 2; i < M; ++ i) {
if (!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] * i < M; ++ j) {
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}
int main() {
long long l, r;
while (cin >> l >> r) {
cnt = 0;
get_primes();
memset(st, 0, sizeof st);
for (int i = 0; i < cnt; ++ i) {
int p = primes[i];
for (long long j = max(2ll * p, (l + p - 1) / p * p); j <= r; j += p) {
st[j - l] = true;
}
}
cnt = 0;
for (int i = 0; i <= r - l; ++ i) {
if (!st[i] && i + l > 1) {
primes[cnt ++ ] = l + i;
}
}
if (cnt < 2) {
puts("There are no adjacent primes.");
continue;
}
int minp = -1, maxp = -1;
for (int i = 0; i + 1 < cnt; ++ i) {
int d = primes[i + 1] - primes[i];
if (minp == -1 || primes[minp + 1] - primes[minp] > d) minp = i;
if (maxp == -1 || primes[maxp + 1] - primes[maxp] < d) maxp = i;
}
printf("%d,%d are closest, %d,%d are most distant.\n", primes[minp], primes[minp + 1], primes[maxp], primes[maxp + 1]);
}
}
AcWing 197. 阶乘分解
题意 :
- 给定整数 N,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pi 和 ci 即可。
- 3≤N≤10^6
思路 :
- 若把1~N每个数分别分解质因数,再把结果合并,时间复杂度过高,为 O ( N N ) O(N \sqrt{N}) O(NN)。显然,N!的每个质因子都不会超过N,我们可以先筛选出1~N的每个质数p,然后考虑阶乘N!中一共包含多少个质因子p
- N!中质因子p的个数就等于1~N每个数包含质因子p的个数之和。在1~N中,p的倍数,即至少包含1个质因子p的显然有 ⌈ N / p ⌉ \lceil N / p \rceil ⌈N/p⌉个。而 p 2 p^2 p2的倍数,即至少包含2个质因子p的有 ⌈ N / p 2 ⌉ \lceil N / p^2 \rceil ⌈N/p2⌉个。不过其中的1个质因子已经在 ⌈ N / p ⌉ \lceil N / p \rceil ⌈N/p⌉里统计过,所以只需要再统计第2个质因子,即累加上 ⌈ N / p 2 ⌉ \lceil N / p^2 \rceil ⌈N/p2⌉,而不是 2 ∗ ⌈ N / p 2 ⌉ 2* \lceil N / p^2 \rceil 2∗⌈N/p2⌉
- 综上所述,N!中质因子p的个数为:
⌊ N / p ⌋ + ⌊ N / p 2 ⌋ + ⌊ N / p 3 ⌋ + . . . + ⌊ N / p ⌊ l o g p N ⌋ ⌋ = ∑ p k ≤ N ⌊ N / p k ⌋ \lfloor N / p \rfloor + \lfloor N / p^2 \rfloor + \lfloor N / p^3 \rfloor + ... + \lfloor N / p^{\lfloor log_pN \rfloor} \rfloor = \sum_{p^k \leq N} \lfloor N / p^k \rfloor ⌊N/p⌋+⌊N/p2⌋+⌊N/p3⌋+...+⌊N/p⌊logpN⌋⌋=∑pk≤N⌊N/pk⌋ - 对于每个p,只需要 O ( l o g N ) O(logN) O(logN)的时间计算上述和式。故对整个N!分解质因数的时间复杂度为 O ( N l o g N ) O(NlogN) O(NlogN)
#include <iostream>
using namespace std;
const int N = 1e6 + 10;
bool st[N];
int primes[N], cnt;
void get_primes(int n) {
for (int i = 2; i <= n; ++ i) {
if (!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] * i <= n; ++ j) {
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}
int main() {
int n;
scanf("%d", &n);
get_primes(n);
for (int i = 0; i < cnt; ++ i) {
int p = primes[i];
int s = 0;
for (int j = p; j <= n; j *= p) {
s += n / j;
if (j > n / p) break; // j * p > n,下一次就大于n,s就加0了,因此直接break,这样写是防止j * p溢出
}
cout << p << ' ' << s << endl;
}
}