AcWing寒假每日一题 2060.奶牛选美

题目描述:2060. 奶牛选美 - AcWing题库

听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。

不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。

约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。

牛皮可用一个 N×M 的字符矩阵来表示,如下所示:

................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....

其中,X 表示斑点部分。

如果两个 X 在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。

约翰牛群里所有的牛都有两个斑点

约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。

在上面的例子中,他只需要给三个 .. 区域内涂色即可(新涂色区域用 ∗ 表示):

................
..XXXX....XXX...
...XXXX*...XX...
.XXXX..**..XXX..
........XXXXX...
.........XXX....

请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。

输入格式

第一行包含两个整数 N 和 M。

接下来 N 行,每行包含一个长度为 M 的由 X 和 . 构成的字符串,用来表示描述牛皮图案的字符矩阵。

输出格式

输出需要涂色区域的最少数量。

数据范围

1≤N,M≤50

输入样例:

6 16
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....

输出样例:

3

思路:

首先读题抽象:本题很可以抽象为图里求两个连通块的最短距离

然后转化成经典算法 :那就要遍历求出两个连通块放到两个集合里,然后再暴力求最短距离,图的遍历两种算法,dfs和bfs都可以

其中,存放两个联通快可以用一个二维的vector数组,怎么判断是哪个连通块呢?其实无论是dfs还是bfs,如果是连通图都只会dfs或者bfs一次便可以遍历所有的点,如果是非连通图,有几个联通块就会dfs或者bfs几次,那么该题一定是有两个连通块,用k=0来表示第一个连通块,则vector数组points[k=0]放的就是第一个连通块的顶点,如果下次遍历,就让k++,这样第二次points[k=1]放的就是第二个连通块的顶点,最后遍历两个连通块,用两次for循环便可以暴力求出两个连通块的最短距离

最短距离其实就是两个连通块的两个顶点a(x1,y1),b(x2,y2)的直线距离abs(x1-y1)+1bs(x2-y2)-1

代码实现:

#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=60;
int n,m;
char g[N][N];
typedef pair<int,int> PII;
vector<PII> points[2];
int dx[]={0,0,1,-1},dy[]={1,-1,0,0};
void dfs(int x,int y,vector<PII> &ps){
    g[x][y]='.';//标志为.其实就是标记为已访问,防止重复遍历
    ps.push_back({x,y});
    for(int i=0;i<4;i++){
        int px=dx[i]+x,py=dy[i]+y;
        if(px>=0&&px<n&&py>=0&&py<m&&g[px][py]=='X')
            dfs(px,py,ps);
    }
}
int main()
{
    cin>>n>>m;
    int minp=1e8;
    for(int i=0;i<n;i++) cin>>g[i];
    for(int i=0,k=0;i<n;i++){
        for(int j=0;j<m;j++){
            if(g[i][j]=='X')
            dfs(i,j,points[k++]);
        }
    }
    for(auto& x:points[0]){
        for(auto& y:points[1]){
            minp=min(minp,abs(x.first-y.first)+abs(x.second-y.second)-1);
        }
    }
    cout<<minp<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值