HGNN复现

文章讲述了在Python3.6.13环境下安装PyTorch0.4.0时遇到的版本不兼容问题,提到升级到3.6.7解决问题。此外,还涉及到了yaml依赖的安装以及如何配置数据集,如修改config.yaml文件内容和指定数据集和结果路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python版本:3.6.13

torch版本:http://download.pytorch.org/whl/cpu/torch-0.4.0-cp36-cp36m-win_amd64.whl

安装torch:

pip install http://download.pytorch.org/whl/cpu/torch-0.4.0-cp36-cp36m-win_amd64.whl

除了numpy、matplotlib、scipy等依赖项之外还有yaml要安装。

问题1:
似乎是python版本不兼容,升级到3.6.7就解决了

问题2:

明明有了。

因为不是yaml而是pyyaml

问题3:配置数据集


        这个得修改config.yaml文件的内容,我把数据集放在了,除此以外还要修改result的路径,我放在了
 


成功了,慢慢看代码吧之后

03-19
### HGNN 超图神经网络框架实现教程 #### 什么是超图神经网络 (HGNN)? 超图神经网络(Hypergraph Neural Networks, HGNN)是一种扩展传统图神经网络(Graph Neural Networks, GNN)的方法,旨在处理更加复杂的多体关系和高阶交互结构。与普通的图相比,超图允许单条边(称为超边)连接超过两个节点,从而可以表示更高维度的数据关联性[^1]。 #### HGNN 的核心特点 HGNN 主要通过引入超图的概念来增强对复杂数据结构的学习能力。其主要特点是支持多节点之间的联合建模,这使得它非常适合于描述现实世界中的许多场景,比如社交网络分析、推荐系统以及生物信息学等领域中涉及的群体行为模式识别等问题[^3]。 以下是 HGNN 的几个关键技术要点: - **超边定义**: 使用矩阵形式表达节点间的关系强度。 - **传播机制设计**: 借助拉普拉斯平滑操作完成特征聚合过程。 - **深度架构构建**: 可堆叠多层网络传播模块以捕捉深层次语义信息。 #### 如何使用 PyTorch 实现 HGNN? 下面提供了一个简单的 HGNN 模型搭建实例代码片段: ```python import torch from torch import nn class HGNNConv(nn.Module): def __init__(self, in_channels, out_channels): super(HGNNConv, self).__init__() self.weight = nn.Parameter(torch.Tensor(in_channels, out_channels)) def forward(self, x, H_norm): support = torch.mm(x, self.weight) output = torch.spmm(H_norm, support) return output class HGNN(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(HGNN, self).__init__() self.hgcn1 = HGNNConv(input_dim, hidden_dim) self.hgcn2 = HGNNConv(hidden_dim, output_dim) def forward(self, x, H_norm): x = torch.relu(self.hgcn1(x, H_norm)) x = self.hgcn2(x, H_norm) return x ``` 上述代码展示了如何创建一个基础版本的 HGNN 层级结构及其前向计算逻辑。 #### 进一步优化方向 对于实际应用而言,还可以考虑加入更多先进的技巧提升性能表现,例如跳跃知识方法(JK-Nets)[^2] 或者随机丢弃部分边缘(DropEdge),这些策略有助于缓解过拟合现象并促进泛化效果改善。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值