1、定义自己的backboe
driving\models\backbones\efficientnetlite.py
import math
import torch
import torch.nn as nn
import torch.functional as F
from mmengine.model import BaseModule
from mmseg.models import BACKBONES, build_backbone
efficientnet_lite_params = {
# width_coefficient, depth_coefficient, image_size, dropout_rate
'efficientnet_lite0': [1.0, 1.0, 224, 0.2],
'efficientnet_lite1': [1.0, 1.1, 240, 0.2],
'efficientnet_lite2': [1.1, 1.2, 260, 0.3],
'efficientnet_lite3': [1.2, 1.4, 280, 0.3],
'efficientnet_lite4': [1.4, 1.8, 300, 0.3],
# 'efficientnet_lite4': [1.4, 1.8, 224, 0.3],
}
def round_filters(filters, multiplier, divisor=8, min_width=None):
"""Calculate and round number of filters based on width multiplier."""
if not multiplier:
return filters
filters *= multiplier
min_width = min_width or divisor
new_filters = max(min_width, int(filters + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_filters < 0.9 * filters:
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, multiplier):
"""Round number of filters based on depth multiplier."""
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def drop_connect(x, drop_connect_rate, training):
if not training:
return x
keep_prob = 1.0 - drop_connect_rate
batch_size = x.shape[0]
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=x.dtype, device=x.device)
binary_mask = torch.floor(random_tensor)
x = (x / keep_prob) * binary_mask
return x
class MBConvBlock(nn.Module):
def __init__(self, inp, final_oup, k, s, expand_ratio, se_ratio, has_se=False):
super(MBConvBlock, self).__init__()
self._momentum = 0.01
self._epsilon = 1e-3
self.input_filters = inp
self.output_filters = final_oup
self.stride = s
self.expand_ratio = expand_ratio
self.has_se = has_se
self.id_skip = True # skip connection and drop connect
# Expansion phase
oup = inp * expand_ratio # number of output channels
if expand_ratio != 1:
self._expand_conv = nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)
# Depthwise convolution phase
self._depthwise_conv = nn.Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, padding=(k - 1) // 2, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)
# Squeeze and Excitation layer, if desired
if self.has_se:
num_squeezed_channels = max(1, int(inp * se_ratio))
self._se_reduce = nn.Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = nn.Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
self._project_conv = nn.Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._momentum, eps=self._epsilon)
self._relu = nn.ReLU6(inplace=True)
def forward(self, x, drop_connect_rate=None):
"""
:param x: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
identity = x
if self.expand_ratio != 1:
x = self._relu(self._bn0(self._expand_conv(x)))
x = self._relu(self._bn1(self._depthwise_conv(x)))
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_expand(self._relu(self._se_reduce(x_squeezed)))
x = torch.sigmoid(x_squeezed) * x
x = self._bn2(self._project_conv(x))
# Skip connection and drop connect
if self.id_skip and self.stride == 1 and self.input_filters == self.output_filters:
if drop_connect_rate:
x = drop_connect(x, drop_connect_rate, training=self.training)
x += identity # skip connection
return x
# class EfficientNetLite(nn.Module):
@BACKBONES.register_module()
class EfficientNetLite(BaseModule):
def __init__(
self,
):
super(EfficientNetLite, self).__init__()
print(" EfficientNetLite __init__")
name = "efficientnet_lite4"
widthi_multiplier, depth_multiplier, _, drop_connect_rate = efficientnet_lite_params[name]
# Batch norm parameters
momentum = 0.01
epsilon = 1e-3
self.drop_connect_rate = drop_connect_rate
mb_block_settings = [
#repeat|kernal_size|stride|expand|input|output|se_ratio
[1, 3, 1, 1, 32, 16, 0.25],
[2, 3, 2, 6, 16, 24, 0.25],
[2, 5, 2, 6, 24, 40, 0.25],
[3, 3, 2, 6, 40, 80, 0.25],
[3, 5, 1, 6, 80, 112, 0.25],
[4, 5, 2, 6, 112, 192, 0.25],
[1, 3, 1, 6, 192, 320, 0.25]
]
# Stem
out_channels = 32
self.stem = nn.Sequential(
nn.Conv2d(3, out_channels, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(num_features=out_channels, momentum=momentum, eps=epsilon),
nn.ReLU6(inplace=True),
)
# Build blocks
self.blocks = nn.ModuleList([])
for i, stage_setting in enumerate(mb_block_settings):
stage = nn.ModuleList([])
num_repeat, kernal_size, stride, expand_ratio, input_filters, output_filters, se_ratio = stage_setting
# Update block input and output filters based on width multiplier.
input_filters = input_filters if i == 0 else round_filters(input_filters, widthi_multiplier)
output_filters = round_filters(output_filters, widthi_multiplier)
num_repeat= num_repeat if i == 0 or i == len(mb_block_settings) - 1 else round_repeats(num_repeat, depth_multiplier)
# The first block needs to take care of stride and filter size increase.
stage.append(MBConvBlock(input_filters, output_filters, kernal_size, stride, expand_ratio, se_ratio, has_se=False))
if num_repeat > 1:
input_filters = output_filters
stride = 1
for _ in range(num_repeat - 1):
stage.append(MBConvBlock(input_filters, output_filters, kernal_size, stride, expand_ratio, se_ratio, has_se=False))
self.blocks.append(stage)
self._initialize_weights()
# self.ClsHead = ClassifyHead(num_classes=4)
def forward(self, x):
x = self.stem(x)
idx = 0
for stage in self.blocks:
for block in stage:
drop_connect_rate = self.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / len(self.blocks)
x = block(x, drop_connect_rate)
idx +=1
# x= self.ClsHead(x)
print(" EfficientNetLite forward:",x.shape)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 1.0/float(n))
m.bias.data.zero_()
def load_pretrain(self, path):
state_dict = torch.load(path)
self.load_state_dict(state_dict, strict=True)
看下BACKBONES
注册表(@BACKBONES.register_module()
)
可以看到EfficientNetLite
被注册到HEADS
中
- 其实,这里的BACKBONES 是
BACKBONES NECKS HEADS LOSSES SEGMENTORS
的总和
from mmseg.registry import MODELS
BACKBONES = MODELS
NECKS = MODELS
HEADS = MODELS
LOSSES = MODELS
SEGMENTORS = MODELS
- 看下这的BaseModule,
mmengine\model\base_module.py
2、调用EfficientNetLite
if __name__ == "__main__":
print("call EfficientNetLite backbone:")
# 1.配置 dict
backbone_cfg = dict(
type='EfficientNetLite',
)
# 2.从注册器中构建
backbone_obj = build_backbone(backbone_cfg)
backbone_obj.eval()
# 3.forward
name = "efficientnet_lite4"
wh = efficientnet_lite_params[name][2]
input = torch.Tensor(2, 3, wh, wh)
output = backbone_obj(input)