基础数学知识(更新)

本文深入探讨了连续变量的概率分布函数和概率密度函数,解释了为什么连续型变量取特定值的概率为0,以及如何通过概率分布函数描述区间概率。此外,还介绍了概率密度函数作为概率变化率的角色。同时,文章提到了先验概率和后验概率的概念,但未展开详细讨论。
摘要由CSDN通过智能技术生成

一、连续变量的概率分布函数和概率密度函数

连续型变量取某个值xi的概率P(xi)=0:对于连续型变量而言,“取某个具体值的概率”的说法是无意义的,因为取任何单个值的概率都等于0,只能说“取值落在某个区间内的概率”,或“取值落在某个值邻域内的概率”,即只能说P(a<xi≤b),而不能说P(xi)。,看下边的例子:                                       从所有自然数中任取一个数,问这个数等于5的概率是多少?从所有的自然数中取一个,当然是有可能取到5的,但是自然数有无穷多个,因此取到5的概率是1/∞,也就是0。
  又如扔飞镖,虽然是有可能落在靶心的,但其概率也是0(不考虑熟练程度等其他因素),因为靶盘上有无数个点,每个点的概率是一样的,因此落在某一个具体的点上的概率为1/∞=0。

概率分布函数F(x)概率密度函数f(x)用来描述连续变量                                                                    概率分布函数定义:给出取值小于某个值的概率,是概率的累加形式,即:                                                                  F(xi)=P(x<xi)=sum(P(x1),P(x2),……,P(xi)) 离散变量                                                                                 =求积分 连续变量                                                                                        概率分布函数F(x)的作用:(1)给出x落在某区间(a,b]内的概率:P(a<x≤b)=F(b)-F(a);                                                           (2)根据F(x)的斜率判断“区间概率”P(A<x≤B)的变化(实际上就是后面要说的概率密度函数f(x)),某区间(A,B]内,F(x)越倾斜,表示x落在该区间内的概率P(A<x≤B) 越大。如图所示,在区间a,b内F(x)的斜率最大,也就是x落在区间a,b内的概率P(a<x≤b) 越大,其值等于 F(b)-F(a)。

 概率密度函数定义给出了变量落在某值xi邻域内(或者某个区间内)的概率变化快慢,概率密度函数的值不是概率,而是概率的变化率,概率密度函数下面的面积才是概率。

 概率密度函数的性质:

概率分布函数和概率密度函数的关系如下图:

 注意:

 连续型变量的概率、概率分布函数、概率密度函数之间的关系如下图所示:

 我的总结:对于横坐标xi,F(x)的纵坐标表示的是取值小于xi的概率,f(x)的纵坐标表示的是取值在xi附近概率的大小。

二、先验概率和后验概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值