一、连续变量的概率分布函数和概率密度函数
连续型变量取某个值xi的概率P(xi)=0:对于连续型变量而言,“取某个具体值的概率”的说法是无意义的,因为取任何单个值的概率都等于0,只能说“取值落在某个区间内的概率”,或“取值落在某个值邻域内的概率”,即只能说P(a<xi≤b),而不能说P(xi)。,看下边的例子: 从所有自然数中任取一个数,问这个数等于5的概率是多少?从所有的自然数中取一个,当然是有可能取到5的,但是自然数有无穷多个,因此取到5的概率是1/∞,也就是0。
又如扔飞镖,虽然是有可能落在靶心的,但其概率也是0(不考虑熟练程度等其他因素),因为靶盘上有无数个点,每个点的概率是一样的,因此落在某一个具体的点上的概率为1/∞=0。
概率分布函数F(x)和概率密度函数f(x)用来描述连续变量 概率分布函数定义:给出取值小于某个值的概率,是概率的累加形式,即: F(xi)=P(x<xi)=sum(P(x1),P(x2),……,P(xi)) 离散变量 =求积分 连续变量 概率分布函数F(x)的作用:(1)给出x落在某区间(a,b]内的概率:P(a<x≤b)=F(b)-F(a); (2)根据F(x)的斜率判断“区间概率”P(A<x≤B)的变化(实际上就是后面要说的概率密度函数f(x)),某区间(A,B]内,F(x)越倾斜,表示x落在该区间内的概率P(A<x≤B) 越大。如图所示,在区间a,b内F(x)的斜率最大,也就是x落在区间a,b内的概率P(a<x≤b) 越大,其值等于 F(b)-F(a)。
概率密度函数定义:给出了变量落在某值xi邻域内(或者某个区间内)的概率变化快慢,概率密度函数的值不是概率,而是概率的变化率,概率密度函数下面的面积才是概率。
概率密度函数的性质:
概率分布函数和概率密度函数的关系如下图:
注意:
连续型变量的概率、概率分布函数、概率密度函数之间的关系如下图所示:
我的总结:对于横坐标xi,F(x)的纵坐标表示的是取值小于xi的概率,f(x)的纵坐标表示的是取值在xi附近概率的大小。