READ-2301 DBA: Distributed Backdoor Attacks against Federated Learning

DBA是一种针对联邦学习的分布式后门攻击方法,它将全局触发器分解为局部触发器,分别嵌入恶意参与者的数据集中,增强了攻击的隐蔽性和持久性。与集中式后门攻击相比,DBA在不影响全局模型在正常数据上的性能情况下,能在注入后门的数据上实现高攻击准确率。文章还探讨了触发器大小、间隔、位置以及投毒比例等因素对攻击效果的影响。
摘要由CSDN通过智能技术生成

READ-2301 DBA: Distributed Backdoor Attacks against Federated Learning

论文名称DBA: Distributed Backdoor Attacks against Federated Learning
作者Chulin Xie, Keli Huang, Pin-Yu Chen, Bo Li
来源ICLR 2020
领域Machine Learning – Federal learning – Backdoor Attacks
问题已有的后门攻击将相同的全局触发器嵌入到所有攻击者数据中,不完全符合FL分布式的性质,属于集中式的后门攻击
方法提出一种符合FL分布式性质的攻击框架,DBA将全局触发器模式分解为本地形式,并分别嵌入到恶意参与者的数据集中,比集中式后门攻击更加隐蔽并且影响更加持久
创新分布式后门攻击

阅读记录

一、DBA框架
  1. 攻击模型:攻击者可以完全控制本地更新过程(如设置后门数据以及本地更新的超参数),但无法影响服务器(如聚合规则与更新过程)
  2. 攻击目标:使本地模型同时适合主要任务和后门任务,让全局模型在没有扰动的数据上表现正常,但在注入后门的数据拥有较高的攻击准确率
    (1)集中式后门攻击者本地训练目标函数
    1

R:将干净数据转换为后门数据
φ = {TS, TG, TL}:R所需参数,包括触发器大小、触发器间隔、触发器位置
2

D:客户端数据集,包括S_poi和S_cln,且二者无交集
S_poi:中毒数据集
S_cln:干净数据集
τ:目标标签
(2)分布式后门攻击者本地训练目标函数
DBA的攻击目标:在使用全局触发器攻击全局模型时,和集中式攻击有相同的效果
local trigger:部分触发器
global trigger:local trigger的集合
3

Φ:全局触发器,Φ_i为全局触发器使用分解策略获得的局部触发器
O:对于本地触发器的几何分解策略
γ:在聚合前对更新的操纵程度

二、对比:DBA & CBA

4

  1. 集中式后门攻击:使用全局触发器进行攻击
  2. 分布式后门攻击:使用全局触发器的一部分进行攻击
  3. 性能:尽管DBA没有施加全局后门,但攻击效果远优于集中式后门攻击
三、DBA的影响因素;

表格数据中特征重要性的触发属性:
5

  1. 触发器大小(TS):一个本地分布式触发器的像素个数
  2. 触发器间隔(TG):本地触发器间上下左右的距离
  3. 触发器位置(TL):触发器距离图片左上角的距离
  4. 投毒扩大因子(γ):攻击者扩大恶意模型权重
    6

X:本地模型
G:全局模型

  1. 投毒比例(r):每个batch中投毒样本的比例,r越大,攻击效果越强,但容易损害模型性能
  2. 投毒间隔(I):两次投毒之间的通信间隔
  3. 数据分布:non-iid的迪利克雷分布,使用超参数α生成不同的数据分布

总结

本文提出了一种分布式的后门攻击,攻击时将全局的触发器进行拆分,恶意客户端将全局触发器划分为局部触发器,将局部触发器嵌入本地客户端,再进行训练。相比集中式后门攻击,DBA拥有更强的攻击性。


下一步学习计划

之后将继续阅读防御后门攻击的相关论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值