1 GoogleNet Inception v2
v1具体结构:
v2具体结构:
1 引入Batch Normalization(BN):
Inception v2在每个卷积层之后引入了BN。这有助于解决深层网络中的梯度消失问题,同时加快训练过程并提高模型的收敛速度。BN通过减少内部协变量偏移,使每一层的输入更加稳定。
2 使用更小的卷积核:
Inception v2采用了更多的3x3卷积核代替大尺寸卷积核。这种设计可以减少参数数量,从而减少过拟合的风险,并降低计算复杂度。
Inception v2将大尺寸的卷积核(如5x5)分解成两个较小的卷积核(如3x3)。这不仅减少了参数的数量和计算量,还保持了网络的表达能力。如下图在v1中,只改变了,第三个位置的5x5变成了两个3x3,当然也修改了inception结构输出的通道数