和神经网络/机器学习一样, 需要对输入的数据需要进行预处理操作, 需要进行预处理的主要原因是:
1 输入数据单位不一样, 可能会导致神经网络收敛速度慢, 训练时间长
2 数据范围大的输入在模式分类中的作用可能偏大, 而数据范围小的作用就有可能偏小
3 由于神经网络中存在的激活函数是有值域限制的, 因此需要将网络训练的目标数据映射到激活函数的值域
4 S形激活函数在(-4,4)区间以外区域很平缓, 区分度太小。例如S形函数f(X), f(100) 与f(5)只相差0.0067
1 去均值
去均值(Mean Subtraction),也常被称为均值归一化(Mean Normalization),是数据预处理中的一种方法。在此方法中,从每个特征中减去该特征的平均值,使得处理后的数据均值为零。
2 标准化
标准化(Standardization)是数据预处理的一种方法,其目的是将不同尺度和分布的特征转换为均值为0,标准差为1的特征。