输入数据预处理(去均值,标准化,归一化)

本文探讨了神经网络和机器学习中数据预处理的重要性,包括处理单位不一致、调整数据范围、映射到激活函数值域等。重点介绍了均值归一化、标准化和归一化的概念,以及在图像领域中Pillow和OpenCV用于的更复杂的图像特征转换,如几何变换和颜色处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

和神经网络/机器学习一样, 需要对输入的数据需要进行预处理操作, 需要进行预处理的主要原因是:

1 输入数据单位不一样, 可能会导致神经网络收敛速度慢, 训练时间长
2 数据范围大的输入在模式分类中的作用可能偏大, 而数据范围小的作用就有可能偏小
3 由于神经网络中存在的激活函数是有值域限制的, 因此需要将网络训练的目标数据映射到激活函数的值域
4 S形激活函数在(-4,4)区间以外区域很平缓, 区分度太小。例如S形函数f(X), f(100) 与f(5)只相差0.0067

1 去均值

去均值(Mean Subtraction),也常被称为均值归一化(Mean Normalization),是数据预处理中的一种方法。在此方法中,从每个特征中减去该特征的平均值,使得处理后的数据均值为零。

2 标准化

标准化(Standardization)是数据预处理的一种方法,其目的是将不同尺度和分布的特征转换为均值为0,标准差为1的特征。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值