loc函数:通过行索引 "Index" 中的具体值来取行数据(如取"Index"为"A"的行)
iloc函数:通过行号来取行数据(如取第二行的数据)
本文给出loc、iloc常见的五种用法,并附上详细代码。
1. 利用loc、iloc提取行数据
import numpy as np
import pandas as pd
#创建一个Dataframe
data=pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('ABCD'))
In[1]: data
Out[1]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
#取索引为'a'的行
In[2]: data.loc['a']
Out[2]:
A 0
B 1
C 2
D 3
#取第一行数据,索引为'a'的行就是第一行,所以结果相同
In[3]: data.iloc[0]
Out[3]:
A 0
B 1
C 2
D 3
2. 利用loc、iloc提取列数据
n[4]:data.loc[:,['A']] #取'A'列所有行,多取几列格式为 data.loc[:,['A','B']]
Out[4]:
A
a 0
b 4
c 8
d 12
In[5]:data.iloc[:,[0]] #取第0列所有行,多取几列格式为 data.iloc[:,[0,1]]
Out[5]:
A
a 0
b 4
c 8
d 12
大大大大大区别
In[5]:data.iloc[:,0] #取第0列所有行,没有列索引的标号
Out[5]:
a 0
b 4
c 8
d 12
Name: A, dtype: int32
3.利用loc、iloc提取指定行、指定列数据
In[6]:data.loc[['a','b'],['A','B']] #提取index为'a','b',列名为'A','B'中的数据
Out[6]:
A B
a 0 1
b 4 5
In[7]:data.iloc[[0,1],[0,1]] #提取第0、1行,第0、1列中的数据
Out[7]:
A B
a 0 1
b 4 5
4.利用loc、iloc提取所有数据
In[8]:data.loc[:,:] #取A,B,C,D列的所有行
Out[8]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
In[9]:data.iloc[:,:] #取第0,1,2,3列的所有行
Out[9]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
5.利用loc函数,根据某个数据来提取数据所在的行
In[10]: data.loc[data['A']==0] #提取data数据(筛选条件: A列中数字为0所在的行数据)
Out[10]:
A B C D
a 0 1 2 3
利用loc函数的时候,当index相同时,会将相同的Index全部提取出来,优点是:如果index是人名,数据框为所有人的数据,那么我可以将某个人的多条数据提取出来分析;缺点是:如果index不具有特定意义,而且重复,那么提取的数据需要进一步处理,可用.reset_index()函数重置index
同样:at与iat函数可抽取指定行列的值,详情见博文(DataFrame中at、iat函数详解)
最后:本博文中loc与iloc函数可提取指定行列数据,删除Dateframe指定行列数据可参考博主下列博文(点击跳转):