DeepSeek 本地部署全攻略:保姆级教程
本文将详细介绍如何在本地部署 DeepSeek 模型,并以图文的形式把操作步骤展示出来,确保即使是初学者也能轻松上手。我们将从环境准备、安装依赖、模型下载到运行模型的每一步进行详细讲解。
一、本地部署的适用场景
本地部署适合以下情况:
电脑配置较高,有独立显卡:本地部署需要较强的硬件支持,尤其是GPU需求。
有私密数据需要处理,担心泄密:本地部署可以避免数据上传到云端,确保数据安全。
需要与本地工作交流结合:处理高频任务或复杂任务时,本地部署可以提供更高的灵活性和效率。
日常使用量大,调用 API 需要收费:本地部署可以节省 API 调用的费用。
想要在开源模型基础上做个性化定制:本地部署允许你对模型进行二次开发和定制。
总结:有钱有技术 + 怕泄密 → 本地部署 没钱没技术 + 图省事 → 直接使用网页/APP
·
二、本地部署的基本步骤
1. 环境准备:确保你的系统满足以下要求
操作系统:Linux(推荐 Ubuntu 20.04 或更高版本)或 Windows。
Python:3.8 或更高版本。
GPU:支持 CUDA 的 NVIDIA GPU(推荐16GB 显存以上)。
CUDA:11.2 或更高版本。
CUDNN:8.1 或更高版本。
Linux择按照我编辑的跟着操作就行,Windows根据自己的电脑类型,选择不同版本。
苹果电脑选最左边(蓝色框),Windows系统选最右边(红色框),之后点击下载(绿色框)。
2. 安装依赖
首先,安装必要的依赖项:
sudo apt-get update
sudo apt-get install -y python3-pip python3-dev python3-venv git
3. 创建虚拟环境
为了避免依赖冲突,建议在虚拟环境中操