二阶连续偏导

文章探讨了偏导数的概念,强调它是在多变量函数中只对一个变量求导,其他变量视为常数。对于二阶偏导,特别是对抽象函数f(u,v),建议使用链式法则来解决。通过解决实际问题,可以帮助读者更好地掌握这一数学工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在高等数学学习中了解了偏导数的相关知识,偏导数可以这样去理解,偏心的偏,只对某一变量进行求导,其他变量可视为常数项 。例如z=x^2*y^2;该函数对于x的偏导=2*x*y^2.

而在偏导数知识点中,较难的便是对函数名称偏导,尤其进行二阶偏导的时候更是不知道如何进行,它并没有具体的函数展开式,而只是形如f(u,v)的形式,如下题。

对于此类题,采用链式法则求解,不了解的可以查阅资料,不过,通过解决下面这道题,我想也就不会有其他问题了。

//题目后面的两撇不是求二阶导,而是偏导的表示形式,表示为二阶偏导。 

偏导表示形式主要有如下几种:

//下面方便大家理解答案,求导定理对偏导同样适用 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星河欲转。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值