
【5-4-7】数值优化理论
文章平均质量分 89
本专栏会持续更新,结合本人在机器人、自动驾驶行业的研发经验,从常用的优化理论类型及方法、非线性优化求解器、机器人\自动驾驶\无人机优化求解案例分析等角度出发,探讨机器人相关优化原理和项目实践。
RoboticsTechLab
一枚爱琢磨、愿意深耕的研发攻城狮,现从事于机器人、自动驾驶行业,不定期分享机器人、自动驾驶及工作经验相关内容,感谢关注!
展开
-
【路径平滑】窗口滑动滤波结合共轭梯度下降法实现平滑路径
对于一个 二次型优化问题:一般情况下,分别用 梯度下降法(GD) 和 共轭方向法(CG),有如下图的收敛轨迹:显然可以看出,梯度下降法需要经过多次迭代,而共轭方向法只需要经过两次迭代。原创 2025-04-07 08:49:04 · 896 阅读 · 0 评论 -
轨迹非线性优化
Voronoi图是在收到栅格地图的回调函数处理生成的,Voronoi图就是根据栅格地图障碍物代价生成的一系列原理障碍物的蓝色点路径,蓝色点路径和之前路径探索得到的路径是不完全吻合和,【防盗标记–盒子君hzj】使用蓝色点路径优化原有路径可以实现车辆也能很好地通过狭窄路段,使路径远离障碍物。voronoi 场表明到最近的 voronoi 边缘和最近的障碍物的距离。在stage 1的子节点扩张的过程中,路径会有一些额外的不必要控制动作(即steering),所以算法的第二个部分就是对生成点曲线进行平滑处理。原创 2025-04-07 08:45:05 · 814 阅读 · 0 评论 -
【手写下降优化算法训练】梯度下降优化算法与模型训练
线性模型(linear model)是希望通过一个直线的形式来描述模式。线性模型的目标函数如下所示:线性模型的假设函数绘制出来,其实就是一条直线。如h(x)=5+2∗x的图形就是一个具体的例子。原创 2025-04-03 12:27:28 · 615 阅读 · 0 评论 -
【优化理论】第一章:最优化用到的基本数学概念
但是这里有很多不同的范数,1范数就相当于是曼哈顿距离,2范数相当于欧几里得距离,无穷范数就相当于闵氏距离。一般来说,下标省略的范数,默认是2,如下是范数2时的常用的Cauchy不等式。用两种方法计算梯度,一种是元素法,一种是向量法。范数相当于是从向量空间到实数域的映射,也就是。等号仅当两个向量线性相关的时候取到。多元函数梯度的定义可以推广到矩阵。原创 2025-04-05 11:23:58 · 45 阅读 · 0 评论 -
【优化理论】第二章:最优化问题的建立
凸集定义集合中任意两点连线形成的线段属于这个集合,这个集合是凸集。注意:是否是凸集,集合的边界是否属于这个集合很重要这涉及到构造最小凸包的问题。上面列出的超平面、半空间等等都是凸集的典型代表凸集运算凸集的并集不一定是凸或非凸,凸集的交集一定是凸集。凸集的sum与product一定是凸集。凸函数的定义凸函数的性质凸函数最重要的性质就是Jensen’s inequality,也就是琴生不等式。若能取到等号则是凸函数,若不能取到等号则是强凸函数,若不等号相反,则是凹函数。原创 2025-04-05 11:24:17 · 174 阅读 · 0 评论 -
【优化理论】第三章之一:目标函数的求解之目标函数求导取极值【针对线性优化问题求解】
最优化问题的求解是一个迭代的过程, 从初始点(初始解)x0开始, 通过迭代方法(梯度下降法, 牛顿法等)逐步更新xi, 直至逼近最优解x∗上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢?或者更高维度的问题里, 如何确定每个维度的方向和步长呢?原创 2025-04-05 11:24:37 · 74 阅读 · 0 评论 -
【优化理论】第三章之二:目标函数的求解之梯度下降优化(一阶导数)【适用于线搜索】
当初始步长不满足准则是, 我们一般使用一些简单的缩放来寻找满足要求的步长. 上图就是常见的回退法, 当步长α不满足要求时, 给定一个γ∈(0,1), 不停的缩小步长直到其满足准则.因为步长α是从大变小的, 这保证了α尽可能的大.在梯度下降优化的方法中,步长是固定的,收敛速度较慢,我们通过一些不等式, 判断步长是否合适, 通过缩放步长, 来快速找到满足不等式的步长,加快收敛的速度。在line_search_test() 中, 定义了初始点(−5,8), 基于梯度下降法, 使用不同的线搜索方法求最优解.原创 2025-04-05 11:24:54 · 72 阅读 · 0 评论 -
【优化理论】第三章之三:目标函数的求解之牛顿法\拟牛顿法优化(二阶导数)【适用于固定步长】
上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢?最优化问题的求解是一个迭代的过程, 从初始点(初始解)x0开始, 通过迭代方法(梯度下降法, 牛顿法等)逐步更新xi, 直至逼近最优解x∗。3、全局视野:牛顿法在选择下降方向时,不仅考虑当前位置的梯度,还考虑未来位置梯度的变化趋势,因此具有更强的全局视野。下图展示了梯度下降法(绿)和牛顿法(红)的对比, 可以看到牛顿法要高效的多.原创 2025-04-05 11:25:13 · 71 阅读 · 0 评论 -
【优化理论】第三章之四:目标函数的求解之0.618比例进退法
该方法的基本思想是:先选定初始点α 0> 0 和一个初始步长 γ 0> 0,从α 0起,以 γ 0为步长向前搜索一步,得 α 0 +γ 0 .若这一点的目标函数值较α 0 处的目标函数值减小了(说明极值点在选取的初始点右侧,继续向右搜索),则加大γ 0 ,继续向前搜索,直至新一点的目标函数值较前一点的目标函数值增大了,搜索结束。上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢?原创 2025-04-05 11:25:31 · 77 阅读 · 0 评论 -
【优化理论】第三章之五:目标函数的求解之QP优化【适用于目标函数为二次型构型的函数】
二次规划(Quadratic Programming)优化,是指优化问题的目标函数为二次函数, 且约束条件为线性的问题。原创 2025-04-06 07:38:49 · 48 阅读 · 0 评论 -
【优化理论】第三章之六:目标函数的求解之信赖阈算法
最优化问题的求解是一个迭代的过程, 从初始点(初始解)x0开始, 通过迭代方法(梯度下降法, 牛顿法等)逐步更新xi, 直至逼近最优解x∗上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢? 或者更高维度的问题里, 如何确定每个维度的方向和步长呢?信赖域方法(Trust Region Methods)是一种用于非线性优化的数值优化方法,旨在寻找目标函数的最小值。信赖域算法是一种迭代算法。核原创 2025-04-06 07:39:11 · 47 阅读 · 0 评论 -
【优化理论】第三章之七:目标函数的求解之Ipopt非线性求解器求解带约束的非线性最优化问题
最优化问题的求解是一个迭代的过程, 从初始点(初始解)x0开始, 通过迭代方法(梯度下降法, 牛顿法等)逐步更新xi, 直至逼近最优解x∗上图形象的展示了这个迭代的过程, 从初始解start点开始, 逐步迭代至最优解. 在这个1维问题上, 迭代方向只有左和右(-, +), 我们如何确定迭代的方向和步长呢? 或者更高维度的问题里, 如何确定每个维度的方向和步长呢?详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题,结合给出的带约束的最优化问题示例,给出相应的完整的C++程序,并给出详细的解释和注原创 2025-04-06 07:39:39 · 70 阅读 · 0 评论 -
【优化理论】第四章:最优算法优化处理技巧
最优化问题通常需要对实际需求进行定性和定量分析,建立恰当的数学模型来描述该问题,设计合适的计算方法来寻找问题的最优解,探索研究模型和算法的理论性质,考察算法的计算性能等多方面。原创 2025-04-06 07:40:02 · 75 阅读 · 0 评论 -
【优化理论】第五章:最优化理论在自动驾驶、机器人等领域的应用
也非常多,对于工业机器人或者移动机器人的轨迹规划,往往需要先生成一个轨迹族,然后制定评价函数,再通过一些约束,如环境约束,或者本身的动力学约束等,最后通过最优化算法得到的最优解就是最优轨迹。最优化在机器学习与深度学习的应用比较热门,因为无论是机器学习还是深度学习,很多时候最核心的还是构造一个非常复杂的函数,然后求其最优解,而所。建立模型迭代求最小值或者极小值,通道求解结果套入模型得到控制输出,前者是优化理论(数值优化等),后者是控制理论(控制输出,反馈输入)通过栅格地图转换成ESDF地图实现。原创 2025-04-06 07:40:26 · 57 阅读 · 0 评论 -
【最优理论】寻找目标函数f(x)极小值的近似方法
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加TODO:写完再整理文章目录系列文章目录前言一、ROS工程目录架构规范(1)launch启动文件(2)工程架构二、ROS功能包架构规范三、ROS源文件节点(.cpp/,h)架构规范四、ROS的msgs数据类型规范五、ROS的话题名、变量名命名规范前言认知有限,望大家多多包涵,有什么问题也希望能够与大家多交流,共同成长!本文先对ROS工程规范做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章提示:以原创 2024-12-22 19:45:15 · 785 阅读 · 0 评论 -
【多项式求解相关】
三次、五次多项式插值在工程实践中很常见。求解多项式的系数最直接的方法是根据端点处的约束条件,列出线性方程组,再写成矩阵方程AX=B,然后用通用的方法(如高斯消元法、LU分解等)解矩阵方程。 本博文利用matlab符号计算的功能,给出三次、五次多项式插值的系数解析解(不需要解矩阵方程),并尽可能减少运算量。代码运行效果展示我们定义了QuinticPolynomial , 它实现了5次多项式的参数方程的参数求解.我们需要给出多项式在起点和终点的状态约束求解之后, QuinticPolynomi原创 2025-04-03 14:09:16 · 66 阅读 · 0 评论 -
最小二乘与残差的区别
最小二乘估计具有良好的统计性质,如在一定条件下,它是无偏的、一致的,并且在所有线性无偏估计中具有最小方差(即它是BLUE,Best Linear Unbiased Estimator)。在方差分析(ANOVA)中,残差平方和是总平方和(Total Sum of Squares, TSS)的一部分,用于分析模型中不同因素对因变量的影响。具体来说,它最小化的是误差的平方和,即残差平方和(RSS)。残差是优化目标的一部分:残差是计算残差平方和的基本单元,而残差平方和是最小二乘法优化的目标函数。原创 2025-04-03 14:08:20 · 389 阅读 · 0 评论