How to build the best medical image segmentation algorithm using foundation models 综述阅读

在这里插入图片描述
文章地址:https://arxiv.org/abs/2404.09957
code:https://github.com/mazurowski-lab/finetune-SAM

📜 研究背景 现状 目标


Tips: 问题提出的背景,国内外现状如何,目标是什么?

⚙️ 背景

在自动化医学图像分割领域,尤其是针对基于深度学习的模型。近年来,深度学习尤其是变换器模型(如SAM)在自然语言处理和一些视觉任务中取得了显著进展。然而,直接将这些先进的基础模型应用于医学图像分割时,其性能往往不尽如人意,因为它们大多是在自然图像数据集上预训练的,而医学图像具有截然不同的特性。

💡 现状

尽管有大量的研究集中在提升医学图像分割的准确性和效率上,但是目前还缺乏系统性的分析或“最佳实践”指导,来优化这些基础模型在医学图像分割任务上的微调。

🚀 目标

探索和定义开发自动化医学图像分割算法的最优策略,特别关注在医学图像上微调基础模型(例如SAM)。研究通过对各种不同的微调策略、模型组件、微调算法进行综合评估,试图在涵盖所有常见放射学模态的17个数据集上,对这些方法进行比较和分析。

🔁 研究内容


🧩 数据

从公开的在线来源中选择了22个数据集,包括TCIA(癌症成像档案馆)、Kaggle、Zendo、Grand Challenge和Mendeley Data
在这里插入图片描述

🚊 研究基础

自动化医学图像分割任务的需求,特别是在应用深度学习模型进行图像分析时的先进发展。

👩🏻‍💻 研究方法 方案

🔬 实验

1、微调策略的评估:研究评估了多种微调SAM(Segment Anything Model)的策略。这包括对编码器、解码器或两者进行微调,并且考虑了是否使用基础(Vanilla)方法、低秩适应(LoRA)或适配器(Adapter)。
在这里插入图片描述

不同数据集可用性情况:考虑了在医学影像领域常见的三种数据集可用性场景:仅一个标注数据集、多个标注数据集用于不同任务、多个标注和未标注数据集。
基础模型微调:将SAM模型进行微调,以便在医学图像分割任务上表现更好。实验检查了微调SAM相对于先前的分割方法是否提供了性能上的改进。
参数效率学习:研究表明,对编码器和解码器进行参数效率学习的微调策略优于其他策略。
网络架构的影响:实验还检验了网络架构对最终性能的影响,发现其影响相对较小。
自监督学习的额外训练:通过在自监督学习中进一步训练SAM,可以提高模型性能。
方法的无效性展示:论文中还演示了文献中流行的某些方法在实验中的无效性,并将实验扩展到少量样本学习和基于提示的设置。

📚 实验结果

在这里插入图片描述1、通过比较红色和蓝色条形,发现只更新解码器参数变为同时更新编码器和解码器时,平均性能几乎肯定(在ViT-B + Vanilla设置中除外)得到了改善。
2、使用参数效率微调技术(如Adapter或LoRA)在较小的框架内微调SAM似乎提供了更多的好处。
3、SAM在目标对象复杂的任务上表现出色,nnUNet在目标较简单的任务上展示了更高的精度。

📜 结论

针对特定任务的微调SAM可以稍微提升性能;同时优化编码器和解码器比只优化其他策略要好;网络架构对最终性能的影响较小;进一步使用自监督学习训练SAM可以提升最终模型性能。

1、选择性地仅微调注意力层
2、在模型中加入额外的模块似乎比单纯更新选定层的参数更有益。这是因为额外的模块可以重新配置模型,以更好地适应特定的下游任务。

“Adapters
“Low-Rank Adaptation (LoRA)”添加到需要更少参数的自注意层中

🤔 个人总结


Tips: 个人收获与记录?

💭 思考启发

1、考虑微调参数,优先考虑加入额外的模块(如Adapter和LoRA)来优化模型。
2、精细化调整:针对特定的医学图像分割任务,进行精细化的调整,比如调整网络结构中的某些层或模块,以更好地适应任务需求。
3、数据增强:考虑使用如随机旋转、翻转、缩放、裁剪等方法来增加训练数据的多样性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾在学习路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值