简介
人脸识别成为最有潜力的生物身份验证手段,这种应用背景要求自动人脸识别系统能够对一般图象具有一定的识别能力。
今天,人脸检测的应用背景已经远远超出了人脸识别系统的范畴,在基于内容的检索、数字视频处理、视频检测等方面有着重要的应用价值。
一、实验目的
通过MicroPython编程快速实现人脸检测,将摄像头拍摄到的画面中的人脸用矩形框表示出来。
二、实验套件
K210开发板、LCD显示屏、OpenCV
三、实验原理
KPU是K210 内部一个神经网络处理器,它可以在低功耗的情况下实现卷积神经网络计算,实时获取被检测目标的大小、坐标和种类,对人脸或者物体进行检测和分类。
KPU 具备以下几个特点:
①支持主流训练框架按照特定限制规则训练出来的定点化模型。
②对网络层数无直接限制,支持每层卷积神经网络参数单独配置,包括输入输出通道数目、输入输出行、宽、列、高。
③支持两种卷积内核 1x1 和 3x3
④支持任意形式的激活函数。
⑤实时工作时最大支持神经网络参数大小为 5.5MB 到 5.9MB。