[Python]numpy中的nan和常用方法
numpy中的nan和inf
example 01
import numpy as np
t1 = np.arange(12,24).reshape((3,4)).astype(float)
print(t1)
print(t1[t1==t1])
print("-------------------------------------")
t1[1,2:] = np.nan
print(t1)
print(t1[t1==t1])
print("-------------------------------------")
运行结果:
example 02
import numpy as np
def fill_ndarray(t1):
for i in range(t1.shape[1]):
temp_col = t1[:,i]
nan_num = np.count_nonzero(temp_col != temp_col)
if nan_num != 0:
temp_not_nan_col = temp_col[temp_col == temp_col]
temp_col[np.isnan(temp_col)] = temp_not_nan_col.mean()
return t1
if __name__ == "__main__":
t1 = np.arange(24).reshape((4,6)).astype(float)
t1[1,2:] = np.nan
print(t1)
t1 = fill_ndarray(t1)
print("-------------------------------------")
print(t1)
运行结果:
example 03
import numpy as np
from matplotlib import pyplot as plt
us_file_path = "./US_video_data_numbers.csv"
uk_file_path = "./GB_video_data_numbers.csv"
# 加载国家信息
us_data = np.loadtxt(us_file_path