python可视化练习7

实验七 文本数据可视化—Numpy中求解线性方程组

1 矩阵的定义

2 矩阵的线性代数运算

2.1 矩阵的加法与减法
2.2 矩阵的数乘
2.3 矩阵的点乘
2.4 矩阵的转置
2.5 矩阵的求逆
2.6 矩阵的线性方程解
实例1:

1.定义一个3*3的矩阵,数据类型为int,元素从1-10

#1.定义一个3*3的矩阵,数据类型为int,元素从1-10
import numpy as np
A = np.mat(np.arange(1,10).reshape(3,3), int)
print(A)

运行结果:

2.定义一个3*3的矩阵,数据类型为int,元素全为1

#2.定义一个3*3的矩阵,数据类型为int,元素全为1
import numpy as np
A = np.mat(np.ones((3, 3)))
print(A)

运行结果:
在这里插入图片描述
3.定义一个3*3的单位矩阵

#3.定义一个3*3的单位矩阵
import numpy as np
A = np.mat(np.eye(3, 3), int)
print(A)

运行结果:
在这里插入图片描述
4.定义一个3*3的对角矩阵,主对角线的值为222,其他元素全为0。

#4.定义一个3*3的对角矩阵,主对角线的值为222,其他元素全为0。
import numpy as np
A = np.mat(np.diag([2, 2, 2]), int)
print(A)

运行结果:
在这里插入图片描述
实例2.1:创建一个3*5的矩阵,元素从0-15,取1-2行的2-4列作为矩阵A,取2-3行的3-5列作为矩阵B,分别进行矩阵的加法和减法运算。

#2.1实例:创建一个3*5的矩阵,元素从0-15,取1-2行的2-4列作为矩阵A,取2-3行的3-5列作为矩阵B,分别进行矩阵的加法和减法运算。
import numpy as np
X = np.mat(np.arange(0,15
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值