实验七 文本数据可视化—Numpy中求解线性方程组
1 矩阵的定义
2 矩阵的线性代数运算
2.1 矩阵的加法与减法
2.2 矩阵的数乘
2.3 矩阵的点乘
2.4 矩阵的转置
2.5 矩阵的求逆
2.6 矩阵的线性方程解
实例1:
1.定义一个3*3的矩阵,数据类型为int,元素从1-10
#1.定义一个3*3的矩阵,数据类型为int,元素从1-10
import numpy as np
A = np.mat(np.arange(1,10).reshape(3,3), int)
print(A)
运行结果:
2.定义一个3*3的矩阵,数据类型为int,元素全为1
#2.定义一个3*3的矩阵,数据类型为int,元素全为1
import numpy as np
A = np.mat(np.ones((3, 3)))
print(A)
运行结果:
3.定义一个3*3的单位矩阵
#3.定义一个3*3的单位矩阵
import numpy as np
A = np.mat(np.eye(3, 3), int)
print(A)
运行结果:
4.定义一个3*3的对角矩阵,主对角线的值为222,其他元素全为0。
#4.定义一个3*3的对角矩阵,主对角线的值为222,其他元素全为0。
import numpy as np
A = np.mat(np.diag([2, 2, 2]), int)
print(A)
运行结果:
实例2.1:创建一个3*5的矩阵,元素从0-15,取1-2行的2-4列作为矩阵A,取2-3行的3-5列作为矩阵B,分别进行矩阵的加法和减法运算。
#2.1实例:创建一个3*5的矩阵,元素从0-15,取1-2行的2-4列作为矩阵A,取2-3行的3-5列作为矩阵B,分别进行矩阵的加法和减法运算。
import numpy as np
X = np.mat(np.arange(0,15