推荐算法炼丹笔记:阿里序列化推荐算法ComiRec

ComiRec是阿里提出的一种序列推荐算法,它通过多兴趣框架捕捉用户的多元兴趣,利用动态路由和Self-Attention方法生成兴趣向量。模型通过优化损失函数,平衡准确性和多样性,实验表明在亚马逊和淘宝数据集上表现优越。
摘要由CSDN通过智能技术生成
作者:十方  
公众号:炼丹笔记  

Controllable Multi-Interest Framework for Recommendation

1.ComiRec与众不同之处

该论文是阿里在2020年发表在KDD的论文,解决的是序列化推荐的问题,用user以往的行为序列去推荐user接下来最感兴趣的item。这篇论文,认为之前很多序列化推荐方法都最终产生一个user emb去item emb空间中检索出最相关的item,而user在一段时间内,是有多种兴趣的,应该要映射到多个emb去检索。

v2-61053ba0d037eb89249d810f7c0643ce_b.jpg

如上图所示,Emma点击了3大类的item,分别是首饰,包包,化妆品,推荐的时候也应该推荐这3大类的商品。

2.问题定义

v2-797ada5e3c7cdf39c8e1c4ceef0e6f86_b.jpg

v2-6e20f484b455790a7f69e905281b7058_b.jpg

3.多兴趣序列推荐框架

当有了用户行为序列后,获得多兴趣向量的方法有很多,论文主要介绍了两种,一个是动态路由方法(ComiRec-DR),另一个是self-attention(ComiRec-SA)方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值