推荐系统会存储大量的用户与items交互数据,这些数据可以用二部图呈现。二部图对消除推荐系统中数据稀疏性和冷启动有着巨大的帮助。这篇主要总结了3个典型的GNN方法在推荐系统领域处理用户与items的二部图。
我们可以通过每个用户交互过的item列表,构建一个巨大的二部图,如下图所示:
传统的神经网络方法(如协同过滤,双塔),是无法处理上述二部图的,图神经网络就是要充分挖掘节点信息和节点与节点的交互信息,从而带来巨大的商业价值。
在推荐领域,图神经网络主要解决了以下几个问题:
- 节点的敏感度,节点顺序很小的改变极大的影响模型的输出。
- 节点间闭塞的信息交互,传统的深度学习模型不能够充分挖掘高阶节点之间的交互信息。
- 解释能力弱,传统的深度模型面向直观的交互式图结构,不能用于基于图形的解释和推理。
当使用GNN处理二部图,输入节点的顺序并不会影响输出。另外,GNN使用边的去辅助传播、集成节点和邻居的状态,更新当前节点的状态,结构化的信息会被模型捕捉,并表达在每个节点上,从而解决推荐系统稀疏性的问题。