图卷积:从GCN到GAT、GraphSAGE

4a1892b0c34b0fcfa6847fcf274351bf.png

 图模型总体上可以分为两大类:一是random-walk游走类模型,另一类就是GCN、GAT等卷积模型了。

1. 为什么出现GCN来处理图结构

在图像领域,CNN被拿来自动提取图像特征的结构,但是CNN处理的图像或者视频数据中像素点(pixel)是排列成成很整齐的矩阵,虽然图结构不整齐(不同点具有不同数目neighbors),但是不是可以用同样的方法去抽取图的的特征呢?

于是就出现了两种方式来提取图的特征。一是空间域卷积(spatial domain),二是频域卷积(spectral domain)。第一种方式由于每个顶点提取出来的neighbors不同,处理上比较麻烦,同时它的效果没有频域卷积效果好,没有做深究。因此,现在比较流行、工程上应用较多的为频域卷积。

2.GCN

GCN的卷积核心公式: Hl+1=σ(D−1/2AD−1/2HlWl)

GCN计算方式上很好理解,本质上跟CNN卷积过程一样,是一个加权求和的过程,就是将邻居点通过度矩阵及其邻接矩阵,计算出各边的权重,然后加权求和。

D负责提供权值的矩阵,邻接A矩阵控制应该融合哪些点, H表示上一层的embedding参数

 

GCN首次提出了卷积的方式融合图结构特征,提供一个全新的视角。

主要缺点:1.融合时边权值是固定的&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值