很多研究表明,双塔在一个域表现不错,在其他域表现不好了。一个广泛被认同的观点就是双塔仅仅用了最后一层的点积算分,这限制了模型的召回能力。这篇论文<Large Dual Encoders Are Generalizable Retrievers>就否认了这个观点,通过扩展双塔的网络,就能提升模型对各个召回任务的效果,特别是那些跨域的。实验结果表明,该论文提出的Generalizable T5-based dense Retrievers(GTR)在BEIR数据集上显著优于现存的一些召回模型。
在query和document的召回任务中,他们分别被encode到同一空间中,然后使用近邻检索给query高效的找到对应document。很多论文都表示,点积(或是cos相似度)不能够有效抓住语意相关性,这篇论文并不赞同。值得注意的是,扩展双塔网络的capacity和预训练模型(像是bert)的扩展不同,因为有瓶颈层(用于点积的那层)的存在。提升encoder的capacity却不能改变点积限制了query和document交互信息的现实。为了验证这个假设,该文使用了T5模型,使得encoders可以有50亿的参数,并固定顶层为768维度如下图所示。最后评估了GTR在BEIR benchmark上zero shot的效果,在9个域和18个召回任务的表现是让人吃惊的。