CINTA作业六:拉格朗日定理


1. 设 G 是群,H 是 G 的子群。任取 g 1 g_1 g1, g 2 g_2 g2 ∈ G,则 g 1 H g_1H g1H = g 2 H g_2H g2H 当且仅当 g 1 − 1 g_1^{−1} g11 ⋅ \cdot g 2 g_2 g2∈ H。

充 分 性 : 如 果 g 1 H = g 2 H , 那 么 存 在 h 1 , h 2 ∈ H , 有 g 1 h 1 = g 2 h 2 两 边 同 时 左 乘 g 1 − 1 得 e ⋅ h 1 = g 1 − 1 g 2 h 2 两 边 再 同 时 右 乘 h 2 − 1 得 h 1 h 2 − 1 = g 1 − 1 g 2 而 由 于 H 为 群 , h 1 h 2 − 1 ∈ H , 即 证 得 g 1 − 1 g 2 ∈ H 必 要 性 : 由 g 1 − 1 g 2 ∈ H 得 , 存 在 h ∈ H , g 1 − 1 g 2 = h , 那 么 任 取 h 2 ∈ H , 有 g 1 − 1 g 2 h 2 = h h 2 , g 2 h 2 = g 1 − 1 h h 2 , 又 由 于 h h 2 ∈ H , 也 就 表 明 任 取 h 2 ∈ H , 存 在 h h 2 ∈ H 使 得 , g 1 h ⋅ h 2 = g 2 h 2 , 即 可 证 得 g 1 H = g 2 H 充分性: 如果g_1H=g_2H, 那么存在h_1, h_2∈H, 有g_1h_1=g_2h_2 两边同时左乘g_1-1得e⋅ h_1=g_1^{-1}g_2h_2 两边再同时右乘h_2-1得h_1h_2^{-1}=g_1{-1}g_2 而由于H为群, h_1h_2{-1}∈H, 即证得 g_1{-1}g_2∈H 必要性: 由g_1{-1}g_2∈H得, 存在h∈H, g_1{-1}g_2=h, 那么任取h_2∈H, 有g_1{-1}g_2h_2=hh_2, g_2h_2=g_1{-1}hh_2, 又由于hh_2∈H,也就表明任取h_2∈H,存在hh_2∈H使得, g_1h⋅h_2=g_2h_2, 即可证得g_1H=g_2H :g1H=g2H,h1,h2H,g1h1=g2h2g11eh1=g11g2h2h21h1h21=g11g2H,h1h21H,g11g2H:g11g2H,hH,g11g2=h,h2H,g11g2h2=hh2,g2h2=g11hh2,hh2H,h2H,hh2H使g1hh2=g2h2,g1H=g2H

3. 如果 G 是群,H 是群 G 的子群,且 [G : H] = 2,请证明对任意的 g ∈ G,gH = Hg。

由 [ G : H ] = 2 可 知 , 子 群 H 的 左 陪 集 将 G 划 分 为 两 个 部 分 , 而 且 其 中 一 个 就 是 H 本 身 , 即 g ∈ H 的 时 候 , 另 一 个 部 分 就 应 该 是 G − H 。 那 么 对 于 任 意 g ∈ G : 当 g ∈ H 时 , 由 群 公 理 知 , 群 元 素 的 运 算 结 果 满 足 封 闭 性 , 因 此 有 g H = H = H g , 所 以 g H = H g 当 g ∉ H 时 , g H = G − H , 对 于 右 陪 集 H g , 其 结 果 也 落 G − H 上 , 因 此 g H = H g 。 由[G:H]=2可知, 子群H的左陪集将G划分为两个部分,而且其中一个就是H本身,即g∈H的时候, 另一个部分就应该是G-H。 那么对于任意g∈G: 当g∈H时, 由群公理知,群元素的运算结果满足封闭性, 因此有gH=H=Hg, 所以gH=Hg 当g∉H时, gH=G-H, 对于右陪集Hg, 其结果也落G-H上, 因此gH=Hg。 [G:H]=2,HGHgH,GHgG:gH,,,gH=H=Hg,gH=Hgg/H,gH=GH,Hg,GH,gH=Hg

4. 如果群 H 是群 G 的真子群,即存在 g∈G 但是 g∉ H。请证明 |H| ≤ |G| /2。

首 先 由 群 H 是 群 G 的 真 子 群 可 知 , 群 G 可 以 被 划 分 为 H 和 G − H 至 少 两 个 部 分 , 即 [ G : H ] ≥ 2 , 所 以 陪 集 g H 的 阶 与 H 的 阶 相 同 。 因 此 ∣ G ∣ / ∣ H ∣ = [ G : H ] , 可 得 ∣ H ∣ ≤ ∣ G ∣ / 2 。 首先由群H是群G的真子群可知,群G可以被划分为H和G-H至少两个部分,即[G:H] ≥ 2, 所以陪集gH的阶与H的阶相同。 因此 |G| / |H| = [G:H] , 可得 |H| ≤ |G|/2。 HGGHGH[G:H]2,gHHG/H=[G:H],HG/2

5. 设 G 是阶为 pq 的群,其中 p 和 q 是素数。请证明 G 的任意真子群是循环群。

由 拉 格 朗 日 定 理 可 知 , 群 G 的 子 群 的 阶 一 定 整 除 群 G 的 阶 , 又 由 于 G 的 阶 是 p q , p 和 q 是 素 数 , 则 G 的 真 子 群 有 三 个 , e , 群 的 阶 为 p 的 子 群 和 群 的 阶 为 q 的 子 群 , e 是 循 环 群 , 由 推 论 8.2 知 , 群 的 阶 为 素 数 时 , 群 为 循 环 群 所 以 G 的 任 意 真 子 群 是 循 环 群 。 由拉格朗日定理可知, 群G的子群的阶一定整除群G的阶, 又由于G的阶是pq, p和q是素数,则G的真子群有三个, {e},群的阶为p的子群和群的阶为q的子群, {e}是循环群, 由推论8.2知, 群的阶为素数时, 群为循环群 所以G 的任意真子群是循环群。 ,GG,Gpq,pq,G,epq,e,8.2,,G

7. 使用群论的方法重新证明费尔马小定理和欧拉定理。

设 群 G 元 素 a 的 阶 为 m , 则 a m = e , 且 由 推 论 8.1 有 m ∣ n , 即 存 在 k ∈ Z , n = k × m 那 么 a n = a k m = ( a m ) k = e k = e , 得 证 a n = e 设群G元素a的阶为m, 则am=e,且由推论8.1有m | n,即存在k∈Z, n=k×m 那么a^n=a^{km}=(a^m)^k=ek=e, 得证a^n=e Gam,am=e,8.1mnkZ,n=k×man=akm=(am)k=ek=e,an=e

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值