CINTA作业七:同态


第3题

在这里插入图片描述

要 证 H 1 H 2 是 群 G 的 正 规 子 群 , 首 先 证 明 H 1 H 2 是 群 G 的 子 群 , 再 去 证   ∀   g ∈ G , 有 g H 1 H 2 g − 1 = H 1 H 2 即 可 。 证 明 群 G 的 两 个 子 群 的 交 仍 是 群 G 的 子 群 显 然 正 确 , 因 为 任 取 h ∈ H 1 H 2 , 有 h ∈ H 1 , h ∈ H 2 , 满 足 群 的 公 理 , 且 单 位 元 e = e ⋅ e ∈ H 1 H 2 。 要 证 g H 1 H 2 g − 1 = H 1 H 2 , 证 明 两 个 集 合 相 互 包 含 即 代 表 相 等 。 要证H_1H_2是群G的正规子群, 首先证明H_1H_2是群G的子群,再去证 \forall g∈G,有gH_1H_2g^{-1}=H_1H_2即可。 证明群G的两个子群的交仍是群G的子群显然正确,因为任取h∈H_1H_2, 有h∈H_1, h∈H_2,满足群的公理,且单位元e=e⋅e∈ H_1H_2。 要证gH_1H_2g-1=H_1H_2, 证明两个集合相互包含即代表相等。 H1H2G,H1H2G  gGgH1H2g1=H1H2GGhH1H2,hH1,hH2e=eeH1H2gH1H2g1=H1H2,

1. 证 g H 1 H 2 g − 1 ⊂ H 1 H 2 1.证gH_1H_2g^{-1}⊂H1H2 1.gH1H2g1H1H2

由 H 1 和 H 2 是 群 G 的 正 规 子 群 以 及 命 题 9.5 知 , ∀ h 1 ∈ H 1 , h 2 ∈ H 2 , g ∈ G , 存 在 h 1 ’ ∈ H 1 , h 2 ’ ∈ H 2 , 使 得 g h 1 g − 1 = h 1 ’ , g h 2 g − 1 = h 2 ’ 。 那 么 g h 1 g − 1 g h 2 g − 1 = h 1 ’ h 2 ’ = g h 1 h 2 g − 1 , 因 此 可 得 g H 1 H 2 g − 1 ⊂ H 1 H 2 。 由H1 和 H2 是群 G 的正规子群以及命题9.5知, ∀h_1∈H_1, h_2∈H_2, g∈G,存在h_1’∈H1, h2’∈H2, 使得gh_1g^{-1}=h_1’, gh_2g^{-1}=h_2’。 那么gh_1g^{-1}gh_2g^{-1}=h_1’h_2’=gh_1h_2g-1, 因此可得gH_1H_2g^{-1}⊂ H_1H_2。 H1H2G9.5,h1H1,h2H2,gGh1H1,h2H2,使gh1g1=h1,gh2g1=h2gh1g1gh2g1=h1h2=gh1h2g1,gH1H2g1H1H2

2. 证 H 1 H 2 ⊂ g H 1 H 2 g − 1 2.证H_1H_2⊂gH_1H_2g^{-1} 2.H1H2gH1H2g1

∀ g − 1 ∈ G , h 1 ∈ H 1 , h 2 ∈ H 2 , 存 在 h 1 ∈ H 1 , h 2 ’ ∈ H 2 , 使 得 g − 1 h 1 g = h 1 ’ , g − 1 h 2 g = h 2 ’ 。 那 么 g − 1 h 1 g g − 1 h 2 g = h 1 ’ h 2 ’ = g − 1 h 1 h 2 g , 等 式 两 边 同 时 左 乘 g , 再 右 乘 g − 1 得 h 1 h 2 = g h 1 ’ h 2 ’ g − 1 , 因 此 可 得 H 1 H 2 ⊂ g H 1 H 2 g − 1 。 ∀g^{-1}∈G, h_1∈H_1, h_2∈H_2,存在h_1∈H_1, h_2’∈H_2, 使得g^{-1}h_1g=h_1’, g^{-1}h_2g=h_2’。 那么g-1h_1gg-1h_2g=h_1’h_2’=g^{-1}h_1h_2g, 等式两边同时左乘g,再右乘g-1得h_1h_2=gh_1’h_2’g^{-1}, 因此可得H_1H_2⊂gH_1H_2g^{-1}。 g1G,h1H1,h2H2h1H1,h2H2,使g1h1g=h1,g1h2g=h2g1h1gg1h2g=h1h2=g1h1h2g,g,g1h1h2=gh1h2g1,H1H2gH1H2g1

第5题

在这里插入图片描述
1 、 充 分 性 : 由 ϕ 是 一 种 群 同 态 可 知 ∀ a , b ∈ G , 有 ϕ ( a + b ) = ϕ ( a ) ϕ ( b ) , 即 g 2 ( a + b ) = g 2 a g 2 b 。 那 么 g a g b g a g b = g a g a g b g b , 等 式 两 边 同 时 左 乘 g − a , 右 乘 g − b 可 得 g b g a = g a g b , 因 此 群 G 是 阿 贝 尔 群 。 2 、 必 要 性 : 当 群 G 是 阿 贝 尔 群 时 , ∀ a , b ∈ G , 有 g a g b = g b g a , 那 么 等 式 两 边 同 时 左 乘 g a , 右 乘 g b 可 得 到 g a g a g b g b = g a g b g a g b , 即 g 2 a g 2 b = g a + b g a + b = g 2 ( a + b ) , 因 此 得 到 ϕ ( a + b ) = ϕ ( a ) ϕ ( b ) 。 1、充分性: 由 \phi 是一种群同态可知 \forall a,b \in G,有 \phi (a+b)= \phi (a) \phi (b),即g^{2(a+b)}=g^{2a}g^{2b}。 那么g^ag^bg^ag^b=g^ag^ag^bg^b,等式两边同时左乘g^{-a},右乘g^{-b}可得g^bg^a=g^ag^b,因此群G是阿贝尔群。 2、必要性: 当群G是阿贝尔群时, \forall a,b \in G,有g^ag^b=g^bg^a, 那么等式两边同时左乘g^a,右乘g^b可得到g^ag^ag^bg^b=g^ag^bg^ag^b, 即g^{2a}g^{2b}=g^{a+b}g^{a+b}=g^{2(a+b)},因此得到 \phi (a+b)= \phi(a)\phi(b)。 1ϕa,bGϕ(a+b)=ϕ(a)ϕ(b)g2(a+b)=g2ag2bgagbgagb=gagagbgbgagbgbga=gagbG2Ga,bGgagb=gbgagagbgagagbgb=gagbgagbg2ag2b=ga+bga+b=g2(a+b)ϕ(a+b)=ϕ(a)ϕ(b)

第7题

在这里插入图片描述
由 题 意 可 得 : [ G : H ] = 2 , 即 群 G 的 子 群 H 的 陪 集 组 成 , 把 群 G 划 分 成 H 和 G − H 两 部 分 。 ∀ g ∈ G , g 有 两 种 情 况 : 1. g ∈ H 时 , 由 群 元 素 之 间 满 足 封 闭 性 可 知 ∀ h ∈ H , 存 在 h ’ ∈ H , 有 g h = h ’ , 所 以 g H = H , 同 理 H g = H , 因 此 g H = H g 。 2. g ∉ H 时 , 左 陪 集 g H = G − H , 右 陪 集 H g = G − H , 因 此 g H = H g 。 可 知 H 是 G 的 正 规 子 群 。 由题意可得:[G:H]=2,即群G的子群H的陪集组成,把群G划分成H和G-H两部分。 \forall g \in G,g有两种情况: 1.g \in H时,由群元素之间满足封闭性可知 \forall h \in H,存在h’ \in H,有gh=h’,所以gH=H,同理Hg=H,因此gH=Hg。 2.g \notin H时,左陪集gH=G-H,右陪集Hg=G-H,因此gH=Hg。 可知H是G的正规子群。 [G:H]=2GHGHGHgGg1.gHhHhHgh=hgH=HHg=HgH=Hg2.g/HgH=GHHg=GHgH=HgHG

第9题

在这里插入图片描述
因 为 商 群 G / H 是 群 G 的 正 规 子 群 H 的 陪 集 集 合 , G / H = a H ∣ a ∈ G , 因 此 若 G 是 循 环 群 , 假 设 群 G 的 一 个 生 成 元 为 g , 则 ∀ a ∈ G , 有 g k = a , k ∈ Z 。 那 么 G / H = g k H ∣ k ∈ Z , 又 由 商 群 的 群 操 作 有 , g k H = ( g H ) k , 那 么 G / H 可 表 示 为 G / H = ( g H ) k ∣ k ∈ Z 因 此 商 群 G / H 也 是 循 环 群 , 生 成 元 为 g H 。 因为商群G/H是群G的正规子群H的陪集集合,G/H={aH|a \in G}, 因此若G是循环群,假设群G的一个生成元为g,则 \forall a \in G,有gk=a,k \in Z。 那么G/H={gkH|k \in Z},又由商群的群操作有,gkH=(gH)k,那么G/H可表示为G/H={(gH)k|k \in Z} 因此商群G/H也是循环群,生成元为gH。 G/HGHG/H=aHaGGGgaGgk=akZG/H=gkHkZgkH=(gH)kG/HG/H=(gH)kkZG/HgH

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值