CINTA作业八:CRT


第1题

在这里插入图片描述
因 为 221 = 13 ∗ 17 , Z 221 ≅ Z 13 x Z 17 , ​ 则 有 2000 ↔ ( 11 , 11 ) , 则 200 0 2 019 ↔ ( 11 , 11 ) 2 019 , 因为221 = 13 * 17,Z_{221} ≅ Z_{13} x Z_{17},​ 则有2000 ↔ (11,11),则2000^2019 ↔ (11,11)^2019, 221=1317Z221Z13xZ172000(11,11)20002019(11,11)2019

所 以 ( 11 , 11 ) 2019 = ( [ 1 1 2019 m o d 13 ] , [ 200 0 2019 m o d 17 ] ) , 所以(11,11)^{2019} = ([11^{2019}mod13],[2000^{2019} mod 17]), (11,11)2019=([112019mod13][20002019mod17])

由 费 马 小 定 理 有 , ​ 1 1 2019 ≡ 1 1 1 66 ∗ 12 + 3 ≡ 113 ( m o d 13 ) = 5 , 1 1 2019 ≡ 1 1 126 ∗ 16 + 3 ≡ 200 0 3 ( m o d 17 ) = 5 , 由费马小定理有, ​11^{2019} ≡ 11^166*12+3 ≡ 113(mod 13)=5, 11^{2019} ≡ 11^{126*16+3} ≡ 2000^3(mod17)=5, 1120191116612+3113(mod13)=51120191112616+320003(mod17)=5,

因 为 ( 5 , 5 ) ↔ 5 , 所 以 200 0 2019 ( m o d 221 ) = 5 。 因为(5,5) ↔ 5,所以2000^{2019} (mod 221) = 5。 (5,5)5,20002019(mod221)=5

第2题

在这里插入图片描述
根 据 e g c d 算 法 得 7 ∗ 11 − 4 ∗ 19 = 1 , 即 7 ∗ 11 ≡ 1 m o d ( 19 ) , ( 11 − 4 ) ∗ 19 ≡ 1 m o d ( 11 ) 因 此 x ≡ 8 ∗ 19 ∗ 7 + 3 ∗ 11 ∗ 7 m o d ( 11 ∗ 19 ) , 解 得 x = 41 根据egcd算法得 7∗11-4∗19=1,即 7∗11 \equiv 1 mod(19), (11-4)∗19 \equiv 1 mod(11) 因此x \equiv 8∗19∗7+3∗11∗7 mod(11∗19),解得x=41 egcd711419=17111mod(19)(114)191mod(11)x8197+3117mod(1119)x=41

第3题

在这里插入图片描述
由 中 国 剩 余 定 理 推 广 : M = 5 ∗ 7 ∗ 9 ∗ 11 = 3465 , ​ 令 b i = M / m i , 则 存 在 b i − 1 使 得 b i b i − 1 ≡ 1 ( m o d m i ) , ​ 所 以 b 1 = 693 , b 2 = 495 , b 3 = 385 , b 4 = 315 , ​ 由 e g c d 可 得 b 1 − 1 = 2 , b 2 − 1 = 3 , b 3 − 1 = 4 , b 4 − 1 = 8 , ​ 所 以 x = 1 ∗ 693 ∗ 2 + 2 ∗ 495 ∗ 3 + 3 ∗ 385 ∗ 4 + 4 ∗ 315 ∗ 8 ​ ( m o d 3465 ) = 1731 。 由中国剩余定理推广:M = 5 * 7 * 9 * 11 = 3465, ​ 令b_i = M/mi,则存在b_i-1 使得b_ib_i^{-1} ≡ 1(mod mi), ​ 所以b_1 = 693,b_2 = 495,b_3 = 385,b_4 = 315, ​ 由egcd可得b_1-1 = 2,b_2-1 = 3,b_3-1 = 4,b_4-1 = 8, ​ 所以x = 1 * 693 * 2 + 2 * 495 * 3 + 3 * 385 * 4 + 4 * 315 * 8 ​ (mod 3465) = 1731。 广M=57911=3465bi=M/mibi1使bibi11(modmi)b1=693b2=495b3=385b4=315egcdb11=2b21=3b31=4b41=8x=16932+24953+33854+43158(mod3465)=1731

第4题

在这里插入图片描述
由 题 意 得 : m ∣ ( x − a ) , n ∣ ( x − a ) , ​ 所 以 m = p ( x − a ) , n = q ( x − a ) , p , q 均 为 整 数 ​ 可 得 m n = p q ( x − a ) , 所 以 m n ∣ ( x − a ) , ​ 所 以 x 模 m n 等 于 a 。 由题意得:m|(x-a),n|(x-a), ​ 所以m = p(x-a),n = q(x-a),p,q均为整数 ​ 可得mn = pq(x-a),所以mn|(x-a), ​ 所以x模mn等于a。 m(xa)n(xa)m=p(xa)n=q(xa)p,qmn=pq(xa)mn(xa)xmna

第5题

0 由 费 马 小 定 理 得 p q − 1 ≡ 1 ( m o d q ) , q p − 1 ≡ 1 ( m o d p ) , ​ 由 因 为 p q − 1 ≡ 1 ( m o d p ) , q p − 1 ≡ 1 ( m o d q ) , ​ 由 模 加 法 得 p q − 1 + q p − 1 ≡ 1 ( m o d q ) , p q − 1 + q p − 1 ≡ 1 ( m o d q ) , ​ 由 第 四 题 结 论 可 得 p q − 1 + q p − 1 ≡ 1 ( m o d p q ) 。 由费马小定理得p^{q-1} ≡ 1 (mod q),qp-1 ≡ 1 (mod p), ​ 由因为p^{q-1} ≡ 1 (mod p),q^{p-1} ≡ 1 (mod q), ​ 由模加法得p^{q-1} + q^{p-1} ≡ 1 (mod q),p^{q-1} + q^{p-1}≡ 1 (mod q), ​ 由第四题结论可得p^{q-1} + q^{p-1} ≡ 1 (mod pq)。 pq11(modq)qp11(modp)pq11(modp)qp11(modq)pq1+qp11(modq)pq1+qp11(modq)pq1+qp11(modpq)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值