第1题
因
为
221
=
13
∗
17
,
Z
221
≅
Z
13
x
Z
17
,
则
有
2000
↔
(
11
,
11
)
,
则
200
0
2
019
↔
(
11
,
11
)
2
019
,
因为221 = 13 * 17,Z_{221} ≅ Z_{13} x Z_{17}, 则有2000 ↔ (11,11),则2000^2019 ↔ (11,11)^2019,
因为221=13∗17,Z221≅Z13xZ17,则有2000↔(11,11),则20002019↔(11,11)2019,
所 以 ( 11 , 11 ) 2019 = ( [ 1 1 2019 m o d 13 ] , [ 200 0 2019 m o d 17 ] ) , 所以(11,11)^{2019} = ([11^{2019}mod13],[2000^{2019} mod 17]), 所以(11,11)2019=([112019mod13],[20002019mod17]),
由 费 马 小 定 理 有 , 1 1 2019 ≡ 1 1 1 66 ∗ 12 + 3 ≡ 113 ( m o d 13 ) = 5 , 1 1 2019 ≡ 1 1 126 ∗ 16 + 3 ≡ 200 0 3 ( m o d 17 ) = 5 , 由费马小定理有, 11^{2019} ≡ 11^166*12+3 ≡ 113(mod 13)=5, 11^{2019} ≡ 11^{126*16+3} ≡ 2000^3(mod17)=5, 由费马小定理有,112019≡11166∗12+3≡113(mod13)=5,112019≡11126∗16+3≡20003(mod17)=5,
因 为 ( 5 , 5 ) ↔ 5 , 所 以 200 0 2019 ( m o d 221 ) = 5 。 因为(5,5) ↔ 5,所以2000^{2019} (mod 221) = 5。 因为(5,5)↔5,所以20002019(mod221)=5。
第2题
根
据
e
g
c
d
算
法
得
7
∗
11
−
4
∗
19
=
1
,
即
7
∗
11
≡
1
m
o
d
(
19
)
,
(
11
−
4
)
∗
19
≡
1
m
o
d
(
11
)
因
此
x
≡
8
∗
19
∗
7
+
3
∗
11
∗
7
m
o
d
(
11
∗
19
)
,
解
得
x
=
41
根据egcd算法得 7∗11-4∗19=1,即 7∗11 \equiv 1 mod(19), (11-4)∗19 \equiv 1 mod(11) 因此x \equiv 8∗19∗7+3∗11∗7 mod(11∗19),解得x=41
根据egcd算法得7∗11−4∗19=1,即7∗11≡1mod(19),(11−4)∗19≡1mod(11)因此x≡8∗19∗7+3∗11∗7mod(11∗19),解得x=41
第3题
由
中
国
剩
余
定
理
推
广
:
M
=
5
∗
7
∗
9
∗
11
=
3465
,
令
b
i
=
M
/
m
i
,
则
存
在
b
i
−
1
使
得
b
i
b
i
−
1
≡
1
(
m
o
d
m
i
)
,
所
以
b
1
=
693
,
b
2
=
495
,
b
3
=
385
,
b
4
=
315
,
由
e
g
c
d
可
得
b
1
−
1
=
2
,
b
2
−
1
=
3
,
b
3
−
1
=
4
,
b
4
−
1
=
8
,
所
以
x
=
1
∗
693
∗
2
+
2
∗
495
∗
3
+
3
∗
385
∗
4
+
4
∗
315
∗
8
(
m
o
d
3465
)
=
1731
。
由中国剩余定理推广:M = 5 * 7 * 9 * 11 = 3465, 令b_i = M/mi,则存在b_i-1 使得b_ib_i^{-1} ≡ 1(mod mi), 所以b_1 = 693,b_2 = 495,b_3 = 385,b_4 = 315, 由egcd可得b_1-1 = 2,b_2-1 = 3,b_3-1 = 4,b_4-1 = 8, 所以x = 1 * 693 * 2 + 2 * 495 * 3 + 3 * 385 * 4 + 4 * 315 * 8 (mod 3465) = 1731。
由中国剩余定理推广:M=5∗7∗9∗11=3465,令bi=M/mi,则存在bi−1使得bibi−1≡1(modmi),所以b1=693,b2=495,b3=385,b4=315,由egcd可得b1−1=2,b2−1=3,b3−1=4,b4−1=8,所以x=1∗693∗2+2∗495∗3+3∗385∗4+4∗315∗8(mod3465)=1731。
第4题
由
题
意
得
:
m
∣
(
x
−
a
)
,
n
∣
(
x
−
a
)
,
所
以
m
=
p
(
x
−
a
)
,
n
=
q
(
x
−
a
)
,
p
,
q
均
为
整
数
可
得
m
n
=
p
q
(
x
−
a
)
,
所
以
m
n
∣
(
x
−
a
)
,
所
以
x
模
m
n
等
于
a
。
由题意得:m|(x-a),n|(x-a), 所以m = p(x-a),n = q(x-a),p,q均为整数 可得mn = pq(x-a),所以mn|(x-a), 所以x模mn等于a。
由题意得:m∣(x−a),n∣(x−a),所以m=p(x−a),n=q(x−a),p,q均为整数可得mn=pq(x−a),所以mn∣(x−a),所以x模mn等于a。
第5题
由 费 马 小 定 理 得 p q − 1 ≡ 1 ( m o d q ) , q p − 1 ≡ 1 ( m o d p ) , 由 因 为 p q − 1 ≡ 1 ( m o d p ) , q p − 1 ≡ 1 ( m o d q ) , 由 模 加 法 得 p q − 1 + q p − 1 ≡ 1 ( m o d q ) , p q − 1 + q p − 1 ≡ 1 ( m o d q ) , 由 第 四 题 结 论 可 得 p q − 1 + q p − 1 ≡ 1 ( m o d p q ) 。 由费马小定理得p^{q-1} ≡ 1 (mod q),qp-1 ≡ 1 (mod p), 由因为p^{q-1} ≡ 1 (mod p),q^{p-1} ≡ 1 (mod q), 由模加法得p^{q-1} + q^{p-1} ≡ 1 (mod q),p^{q-1} + q^{p-1}≡ 1 (mod q), 由第四题结论可得p^{q-1} + q^{p-1} ≡ 1 (mod pq)。 由费马小定理得pq−1≡1(modq),qp−1≡1(modp),由因为pq−1≡1(modp),qp−1≡1(modq),由模加法得pq−1+qp−1≡1(modq),pq−1+qp−1≡1(modq),由第四题结论可得pq−1+qp−1≡1(modpq)。