第1题
(
1
)
封
闭
性
:
∀
a
,
b
∈
Q
R
p
,
a
∗
b
=
Q
R
∈
Q
R
p
∀
a
,
b
∈
Q
R
p
,
a
∗
b
=
Q
R
∈
Q
R
p
∀
a
,
b
∈
Q
R
p
,
a
∗
b
=
Q
R
∈
Q
R
p
(1) 封闭性: ∀ a , b ∈ Q R p , a ∗ b = Q R ∈ Q R p \forall a,b \in QR_p,a*b =QR \in QR_p ∀a,b∈QR p ,a∗b=QR∈QR p
(1)封闭性:∀a,b∈QRp,a∗b=QR∈QRp∀a,b∈QRp,a∗b=QR∈QRp∀a,b∈QRp,a∗b=QR∈QRp
( 2 ) 结 合 律 : ∀ m 1 , m 2 , m 3 ∈ Q R p , 有 m 1 ≡ x 1 2 ( m o d p ) , m 2 , ≡ x 2 2 ( m o d p ) , m 3 ≡ x 3 2 ( m o d p ) x 1 , x 2 , x 3 ∈ Z p 。 ( m 1 m 2 , ) m 3 ≡ ( x 1 2 x 2 2 ) x 3 2 ( m o d p ) = x 1 2 ( x 2 2 x 3 2 ) ( m o d p ) 因 此 , ( m 1 m 2 , ) m 3 = m 1 ( m 2 , m 3 ) 。 (2)结合律: \forall m_1,m_2,m_3 \in QRp,有m_1 \equiv x_1^2 (mod p),m_2, \equiv x_2^2 (mod p),m_3 \equiv x_3^2(mod p) x_1,x_2,x_3 \in Zp 。(m_1m_2,)m_3 \equiv (x_1^2x_2^2)x_3^2 (mod p)=x_1^2(x_2^2x_3^2) (mod p) 因此,(m_1m_2,)m_3=m_1(m_2,m_3)。 (2)结合律:∀m1,m2,m3∈QRp,有m1≡x12(modp),m2,≡x22(modp),m3≡x32(modp)x1,x2,x3∈Zp。(m1m2,)m3≡(x12x22)x32(modp)=x12(x22x32)(modp)因此,(m1m2,)m3=m1(m2,m3)。
(
3
)
单
位
元
:
乘
法
单
位
元
:
1
(3) 单位元: 乘法单位元:1
(3)单位元:乘法单位元:1
(
4
)
逆
元
:
p
=
1
时
,
显
然
Q
R
p
Q
R
p
Q
R
p
满
足
群
的
定
理
p
≥
3
时
,
假
设
存
在
逆
元
a
−
1
a
−
1
a
−
1
(4) 逆元: p=1时,显然Q R p QR_pQR p 满足群的定理 p≥3时,假设存在逆元a − 1 a^{-1}a −1
(4)逆元:p=1时,显然QRpQRpQRp满足群的定理p≥3时,假设存在逆元a−1a−1a−1
由 费 马 小 定 理 有 : a p − 1 ≡ 1 ( m o d p ) a p − 1 ≡ 1 ( m o d p ) a p − 1 ≡ 1 ( m o d p ) a a − 1 ≡ 1 ( m o d p ) a a − 1 ≡ 1 ( m o d p ) a a − 1 ≡ 1 ( m o d p ) 由费马小定理有: a p − 1 ≡ 1 ( m o d p ) a^{p-1}≡1(mod\ p) a p−1 ≡1(mod p)a a − 1 ≡ 1 ( m o d p ) aa^{-1}≡1(mod\ p) aa −1 ≡1(mod p) 由费马小定理有:ap−1≡1(modp)ap−1≡1(mod p)ap−1≡1(modp)aa−1≡1(modp)aa−1≡1(mod p)aa−1≡1(modp)
a − 1 ≡ a p − 2 a − 1 ≡ a p − 2 a − 1 ≡ a p − 2 故 逆 元 存 在 a − 1 ≡ a p − 2 a^{-1}≡a^{p-2} a −1 ≡a p−2 故逆元存在 a−1≡ap−2a−1≡ap−2a−1≡ap−2故逆元存在
第2题
设
p
为
奇
素
数
,
则
刚
好
存
在
(
p
−
1
)
/
2
个
模
p
的
Q
R
和
(
p
−
1
)
/
2
个
模
p
的
Q
N
R
。
设p 为奇素数,则刚好存在 ( p − 1 ) / 2 个模 p 的QR 和 ( p − 1 ) / 2 个模 p 的 QNR 。
设p为奇素数,则刚好存在(p−1)/2个模p的QR和(p−1)/2个模p的QNR。
第3题
因
为
Z
p
∗
一
定
存
在
Q
R
与
Q
N
R
,
所
以
可
知
ψ
是
一
个
满
射
。
由
命
题
11.4
可
知
,
∀
a
,
b
∈
Z
p
∗
,
ψ
(
a
b
)
=
ψ
(
a
)
ψ
(
b
)
,
即
证
得
ψ
是
一
个
同
态
映
射
。
因
此
ψ
是
一
个
满
同
态
。
因为Zp*一定存在QR与QNR,所以可知ψ是一个满射。 由命题11.4可知,∀a,b∈Zp*,ψ(ab)=ψ(a)ψ(b),即证得ψ是一个同态映射。 因此ψ是一个满同态。
因为Zp∗一定存在QR与QNR,所以可知ψ是一个满射。由命题11.4可知,∀a,b∈Zp∗,ψ(ab)=ψ(a)ψ(b),即证得ψ是一个同态映射。因此ψ是一个满同态。
第4题
设
g
是
Z
p
∗
的
生
成
元
,
由
p
是
奇
素
数
可
知
g
的
阶
为
p
−
1
。
假
设
g
是
模
p
的
二
次
剩
余
,
则
存
在
a
∈
Z
p
∗
,
g
≡
a
2
(
m
o
d
p
)
。
可
得
g
(
p
−
1
)
≡
a
2
(
p
−
1
)
≡
1
(
m
o
d
p
)
,
而
由
费
尔
马
小
定
理
得
a
(
p
−
1
)
≡
1
(
m
o
d
p
)
g
(
p
−
1
)
/
2
≡
a
(
p
−
1
)
≡
1
(
m
o
d
p
)
,
这
与
g
的
阶
为
p
−
1
矛
盾
。
因
此
Z
p
∗
的
所
有
生
成
元
都
是
模
p
的
二
次
非
剩
余
。
设g是Zp*的生成元,由p是奇素数可知g的阶为p-1。 假设g是模p的二次剩余,则存在a∈Zp*,g≡a^2 (mod p)。 可得g^{(p-1)}≡a^{2(p-1)}≡ 1 (mod p),而由费尔马小定理得a^{(p-1)}≡ 1(mod p) g^{(p-1)/2}≡ a^{(p-1)}≡ 1 (mod p),这与g的阶为p-1矛盾。 因此Zp* 的所有生成元都是模 p 的二次非剩余。
设g是Zp∗的生成元,由p是奇素数可知g的阶为p−1。假设g是模p的二次剩余,则存在a∈Zp∗,g≡a2(modp)。可得g(p−1)≡a2(p−1)≡1(modp),而由费尔马小定理得a(p−1)≡1(modp)g(p−1)/2≡a(p−1)≡1(modp),这与g的阶为p−1矛盾。因此Zp∗的所有生成元都是模p的二次非剩余。
第5题
(
1
)
当
a
为
Q
R
时
,
有
a
≡
b
≡
x
2
(
m
o
d
p
)
,
a
≡
b
≡
x
2
(
m
o
d
p
)
,
a
≡
b
≡
x
2
(
m
o
d
p
)
,
此
时
b
为
Q
R
,
(
a
p
)
=
(
b
p
)
=
1
,
(
a
p
)
=
(
b
p
)
=
1
,
(
p
a
)
=
(
p
b
)
=
1
(1) 当a为QR时,有a ≡ b ≡ x 2 ( m o d p ) , a≡b≡x^2 (mod\ p),a≡b≡x 2 (mod p),此时b为QR, ( a p ) = ( b p ) = 1 ,\left( \frac a p\right)=\left( \frac b p\right)=1,( p a )=( p b )=1
(1)当a为QR时,有a≡b≡x2(modp),a≡b≡x2(mod p),a≡b≡x2(modp),此时b为QR,(ap)=(bp)=1,(pa)=(pb)=1,(pa)=(pb)=1
当
a
为
Q
N
R
时
,
没
有
a
≡
b
≡
x
2
(
m
o
d
p
)
,
a
≡
b
≡
x
2
(
m
o
d
p
)
,
a
≡
b
≡
x
2
(
m
o
d
p
)
,
此
时
b
为
Q
N
R
,
有
(
a
p
)
=
(
b
p
)
=
−
1
(
a
p
)
=
(
b
p
)
=
−
1
(
p
a
)
=
(
p
b
)
=
−
1
当a为QNR时,没有a ≡ b ≡ x 2 ( m o d p ) , a≡b≡x^2 (mod\ p),a≡b≡x 2(mod p),此时b为QNR,有( a p ) = ( b p ) = − 1 \left( \frac a p\right)=\left( \frac b p\right)=-1( p a )=( p b )=−1
当a为QNR时,没有a≡b≡x2(modp),a≡b≡x2(mod p),a≡b≡x2(modp),此时b为QNR,有(ap)=(bp)=−1(pa)=(pb)=−1(pa)=(pb)=−1
故 a ≡ b ( m o d p ) , ( a p ) = ( b p ) a ≡ b ( m o d p ) , ( a p ) = ( b p ) a ≡ b ( m o d p ) , ( p a ) = ( p b ) 成 立 故a ≡ b ( m o d p ) , ( a p ) = ( b p ) a≡b(mod\ p),\left( \frac a p\right)=\left( \frac b p\right)a≡b(mod p),( p a )=( p b )成立 故a≡b(modp),(ap)=(bp)a≡b(mod p),(pa)=(pb)a≡b(modp),(pa)=(pb)成立
( 2 ) 当 a , b 为 Q R 时 , a b 为 Q R , 有 ( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) ( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) ( p a ) ( p b ) = 1 ⋅ 1 = 1 = ( p a b ) (2) 当a,b为QR时,ab为QR,有( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = 1·1 = 1 = \left( \frac {ab} p\right)( p a )( p b )=1⋅1=1=( p ab ) (2)当a,b为QR时,ab为QR,有(ap)(bp)=1⋅1=1=(abp)(pa)(pb)=1⋅1=1=(pab)(pa)(pb)=1⋅1=1=(pab)
当 a , b 为 Q N R 时 , a b 为 Q R , 有 ( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) ( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) ( p a ) ( p b ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( p a b ) 当a,b为QNR时,ab为QR,有( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = (-1)·(-1) = 1 = \left( \frac {ab} p\right)( p a )( p b )=(−1)⋅(−1)=1=( p ab ) 当a,b为QNR时,ab为QR,有(ap)(bp)=(−1)⋅(−1)=1=(abp)(pa)(pb)=(−1)⋅(−1)=1=(pab)(pa)(pb)=(−1)⋅(−1)=1=(pab)
当 a , b 一 个 是 Q R , 另 一 个 是 Q N R 时 , a b 是 Q N R , 有 ( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) ( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) ( p a ) ( p ) = 1 ⋅ ( − 1 ) = − 1 = ( p a b ) 故 ( a p ) ( b p ) = ( a b p ) ( a p ) ( b p ) = ( a b p ) ( p a ) ( p b ) = ( p a b ) 成 立 当a,b一个是QR,另一个是QNR时,ab是QNR,有( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = 1·(-1) = -1 = \left( \frac {ab} p\right)( pa)( p)=1⋅(−1)=−1=( pab ) 故( a p ) ( b p ) = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) =\left( \frac {ab} p\right)( pa )( pb )=( pab)成立 当a,b一个是QR,另一个是QNR时,ab是QNR,有(ap)(bp)=1⋅(−1)=−1=(abp)(pa)(pb)=1⋅(−1)=−1=(pab)(pa)(p)=1⋅(−1)=−1=(pab)故(ap)(bp)=(abp)(pa)(pb)=(pab)(pa)(pb)=(pab)成立
第6题
根
据
欧
拉
准
则
,
(
−
1
/
p
)
≡
(
−
1
)
(
p
−
1
)
/
2
(
m
o
d
p
)
1.
若
p
≡
1
(
m
o
d
4
)
,
则
存
在
k
∈
Z
,
有
p
=
4
k
+
1
,
代
入
得
(
−
1
/
p
)
≡
(
−
1
)
2
k
(
m
o
d
p
)
≡
1
(
m
o
d
p
)
。
因
此
(
−
1
/
p
)
=
1
。
2.
若
p
≡
−
1
(
m
o
d
4
)
,
则
存
在
k
∈
Z
,
有
p
=
4
k
−
1
,
代
入
得
(
−
1
/
p
)
≡
(
−
1
)
2
k
−
1
(
m
o
d
p
)
≡
−
1
(
m
o
d
p
)
。
因
此
(
−
1
/
p
)
=
−
1
。
根据欧拉准则,(-1/p) ≡ (-1)^{(p-1)/2} (mod p) 1.若p≡ 1(mod 4),则存在k∈Z,有p=4k+1,代入得 (-1/p) ≡ (-1)^{2k} (mod p) ≡ 1 (mod p)。因此(-1/p) = 1。 2.若p ≡ −1 (mod 4),则存在k∈Z,有p=4k-1,代入得 (-1/p) ≡ (-1)^{2k-1} (mod p) ≡ -1 (mod p)。因此(-1/p) = -1。
根据欧拉准则,(−1/p)≡(−1)(p−1)/2(modp)1.若p≡1(mod4),则存在k∈Z,有p=4k+1,代入得(−1/p)≡(−1)2k(modp)≡1(modp)。因此(−1/p)=1。2.若p≡−1(mod4),则存在k∈Z,有p=4k−1,代入得(−1/p)≡(−1)2k−1(modp)≡−1(modp)。因此(−1/p)=−1。