CINTA作业九:QR


第1题

在这里插入图片描述
在这里插入图片描述
( 1 ) 封 闭 性 : ∀ a , b ∈ Q R p , a ∗ b = Q R ∈ Q R p ∀ a , b ∈ Q R p , a ∗ b = Q R ∈ Q R p ∀ a , b ∈ Q R p , a ∗ b = Q R ∈ Q R p (1) 封闭性: ∀ a , b ∈ Q R p , a ∗ b = Q R ∈ Q R p \forall a,b \in QR_p,a*b =QR \in QR_p ∀a,b∈QR p ,a∗b=QR∈QR p (1)a,bQRp,ab=QRQRpa,bQRp,ab=QRQRpa,bQRp,ab=QRQRp

( 2 ) ​ 结 合 律 : ∀ m 1 , m 2 , m 3 ∈ Q R p , 有 m 1 ≡ x 1 2 ( m o d p ) , m 2 , ≡ x 2 2 ( m o d p ) , m 3 ≡ x 3 2 ( m o d p ) x 1 , x 2 , x 3 ∈ Z p 。 ( m 1 m 2 , ) m 3 ≡ ( x 1 2 x 2 2 ) x 3 2 ( m o d p ) = x 1 2 ( x 2 2 x 3 2 ) ( m o d p ) 因 此 , ( m 1 m 2 , ) m 3 = m 1 ( m 2 , m 3 ) 。 (2)​结合律: \forall m_1,m_2,m_3 \in QRp,有m_1 \equiv x_1^2 (mod p),m_2, \equiv x_2^2 (mod p),m_3 \equiv x_3^2(mod p) x_1,x_2,x_3 \in Zp 。(m_1m_2,)m_3 \equiv (x_1^2x_2^2)x_3^2 (mod p)=x_1^2(x_2^2x_3^2) (mod p) 因此,(m_1m_2,)m_3=m_1(m_2,m_3)。 (2)m1,m2,m3QRpm1x12(modp)m2,x22(modp)m3x32(modp)x1,x2,x3Zp(m1m2,)m3(x12x22)x32(modp)=x12(x22x32)(modp)(m1m2,)m3=m1(m2,m3)

( 3 ) 单 位 元 : 乘 法 单 位 元 : 1 (3) 单位元: 乘法单位元:1 (3)1
( 4 ) 逆 元 : p = 1 时 , 显 然 Q R p Q R p Q R p ​ 满 足 群 的 定 理 p ≥ 3 时 , 假 设 存 在 逆 元 a − 1 a − 1 a − 1 (4) 逆元: p=1时,显然Q R p QR_pQR p ​ 满足群的定理 p≥3时,假设存在逆元a − 1 a^{-1}a −1 (4)p=1QRpQRpQRpp3a1a1a1

由 费 马 小 定 理 有 : a p − 1 ≡ 1 ( m o d p ) a p − 1 ≡ 1 ( m o d   p ) a p − 1 ≡ 1 ( m o d p ) a a − 1 ≡ 1 ( m o d p ) a a − 1 ≡ 1 ( m o d   p ) a a − 1 ≡ 1 ( m o d p ) 由费马小定理有: a p − 1 ≡ 1 ( m o d p ) a^{p-1}≡1(mod\ p) a p−1 ≡1(mod p)a a − 1 ≡ 1 ( m o d p ) aa^{-1}≡1(mod\ p) aa −1 ≡1(mod p) ap11(modp)ap11(mod p)ap11(modp)aa11(modp)aa11(mod p)aa11(modp)

a − 1 ≡ a p − 2 a − 1 ≡ a p − 2 a − 1 ≡ a p − 2 故 逆 元 存 在 a − 1 ≡ a p − 2 a^{-1}≡a^{p-2} a −1 ≡a p−2 故逆元存在 a1ap2a1ap2a1ap2

第2题

在这里插入图片描述
设 p 为 奇 素 数 , 则 刚 好 存 在 ( p − 1 ) / 2 个 模 p 的 Q R 和 ( p − 1 ) / 2 个 模 p 的 Q N R 。 设p 为奇素数,则刚好存在 ( p − 1 ) / 2 个模 p 的QR 和 ( p − 1 ) / 2 个模 p 的 QNR 。 p(p1)/2pQR(p1)/2pQNR

在这里插入图片描述

第3题

在这里插入图片描述
因 为 Z p ∗ 一 定 存 在 Q R 与 Q N R , 所 以 可 知 ψ 是 一 个 满 射 。 由 命 题 11.4 可 知 , ∀ a , b ∈ Z p ∗ , ψ ( a b ) = ψ ( a ) ψ ( b ) , 即 证 得 ψ 是 一 个 同 态 映 射 。 因 此 ψ 是 一 个 满 同 态 。 因为Zp*一定存在QR与QNR,所以可知ψ是一个满射。 由命题11.4可知,∀a,b∈Zp*,ψ(ab)=ψ(a)ψ(b),即证得ψ是一个同态映射。 因此ψ是一个满同态。 ZpQRQNRψ11.4abZpψ(ab)=ψ(a)ψ(b)ψψ

第4题

在这里插入图片描述
设 g 是 Z p ∗ 的 生 成 元 , 由 p 是 奇 素 数 可 知 g 的 阶 为 p − 1 。 假 设 g 是 模 p 的 二 次 剩 余 , 则 存 在 a ∈ Z p ∗ , g ≡ a 2 ( m o d p ) 。 可 得 g ( p − 1 ) ≡ a 2 ( p − 1 ) ≡ 1 ( m o d p ) , 而 由 费 尔 马 小 定 理 得 a ( p − 1 ) ≡ 1 ( m o d p ) g ( p − 1 ) / 2 ≡ a ( p − 1 ) ≡ 1 ( m o d p ) , 这 与 g 的 阶 为 p − 1 矛 盾 。 因 此 Z p ∗ 的 所 有 生 成 元 都 是 模 p 的 二 次 非 剩 余 。 设g是Zp*的生成元,由p是奇素数可知g的阶为p-1。 假设g是模p的二次剩余,则存在a∈Zp*,g≡a^2 (mod p)。 可得g^{(p-1)}≡a^{2(p-1)}≡ 1 (mod p),而由费尔马小定理得a^{(p-1)}≡ 1(mod p) g^{(p-1)/2}≡ a^{(p-1)}≡ 1 (mod p),这与g的阶为p-1矛盾。 因此Zp* 的所有生成元都是模 p 的二次非剩余。 gZppgp1gpaZpga2(modp)g(p1)a2(p1)1(modp)a(p1)1(modp)g(p1)/2a(p1)1(modp)gp1Zpp

第5题

在这里插入图片描述
在这里插入图片描述
( 1 ) 当 a 为 Q R 时 , 有 a ≡ b ≡ x 2 ( m o d p ) , a ≡ b ≡ x 2 ( m o d   p ) , a ≡ b ≡ x 2 ( m o d p ) , 此 时 b 为 Q R , ( a p ) = ( b p ) = 1 , ( a p ) = ( b p ) = 1 , ( p a ​ ) = ( p b ​ ) = 1 (1) 当a为QR时,有a ≡ b ≡ x 2 ( m o d p ) , a≡b≡x^2 (mod\ p),a≡b≡x 2 (mod p),此时b为QR, ( a p ) = ( b p ) = 1 ,\left( \frac a p\right)=\left( \frac b p\right)=1,( p a ​ )=( p b ​ )=1 (1)aQRabx2(modp),abx2(mod p),abx2(modp),bQR,(ap)=(bp)=1,(pa)=(pb)=1,(pa)=(pb)=1
当 a 为 Q N R 时 , 没 有 a ≡ b ≡ x 2 ( m o d p ) , a ≡ b ≡ x 2 ( m o d   p ) , a ≡ b ≡ x 2 ( m o d p ) , 此 时 b 为 Q N R , 有 ( a p ) = ( b p ) = − 1 ( a p ) = ( b p ) = − 1 ( p a ​ ) = ( p b ​ ) = − 1 当a为QNR时,没有a ≡ b ≡ x 2 ( m o d p ) , a≡b≡x^2 (mod\ p),a≡b≡x 2(mod p),此时b为QNR,有( a p ) = ( b p ) = − 1 \left( \frac a p\right)=\left( \frac b p\right)=-1( p a ​ )=( p b ​ )=−1 aQNR,abx2(modp)abx2(mod p)abx2(modp)bQNR(ap)=(bp)=1(pa)=(pb)=1(pa)=(pb)=1

故 a ≡ b ( m o d p ) , ( a p ) = ( b p ) a ≡ b ( m o d   p ) , ( a p ) = ( b p ) a ≡ b ( m o d p ) , ( p a ​ ) = ( p b ​ ) 成 立 故a ≡ b ( m o d p ) , ( a p ) = ( b p ) a≡b(mod\ p),\left( \frac a p\right)=\left( \frac b p\right)a≡b(mod p),( p a ​ )=( p b ​ )成立 ab(modp),(ap)=(bp)ab(mod p),(pa)=(pb)ab(modp),(pa)=(pb)

( 2 ) 当 a , b 为 Q R 时 , a b 为 Q R , 有 ( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) ( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) ( p a ​ ) ( p b ​ ) = 1 ⋅ 1 = 1 = ( p a b ​ ) (2) 当a,b为QR时,ab为QR,有( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = 1·1 = 1 = \left( \frac {ab} p\right)( p a ​ )( p b ​ )=1⋅1=1=( p ab ​ ) (2)a,bQR,abQR(ap)(bp)=11=1=(abp)(pa)(pb)=11=1=(pab)(pa)(pb)=11=1=(pab)

当 a , b 为 Q N R 时 , a b 为 Q R , 有 ( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) ( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) ( p a ​ ) ( p b ​ ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( p a b ​ ) 当a,b为QNR时,ab为QR,有( a p ) ( b p ) = ( − 1 ) ⋅ ( − 1 ) = 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = (-1)·(-1) = 1 = \left( \frac {ab} p\right)( p a ​ )( p b ​ )=(−1)⋅(−1)=1=( p ab ​ ) a,bQNR,abQR(ap)(bp)=(1)(1)=1=(abp)(pa)(pb)=(1)(1)=1=(pab)(pa)(pb)=(1)(1)=1=(pab)

当 a , b 一 个 是 Q R , 另 一 个 是 Q N R 时 , a b 是 Q N R , 有 ( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) ( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) ( p a ) ( p ) = 1 ⋅ ( − 1 ) = − 1 = ( p a b ​ ) 故 ( a p ) ( b p ) = ( a b p ) ( a p ) ( b p ) = ( a b p ) ( p a ​ ) ( p b ​ ) = ( p a b ​ ) 成 立 当a,b一个是QR,另一个是QNR时,ab是QNR,有( a p ) ( b p ) = 1 ⋅ ( − 1 ) = − 1 = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) = 1·(-1) = -1 = \left( \frac {ab} p\right)( pa)( p)=1⋅(−1)=−1=( pab ​ ) 故( a p ) ( b p ) = ( a b p ) \left( \frac a p\right)\left( \frac b p\right) =\left( \frac {ab} p\right)( pa ​)( pb ​ )=( pab​)成立 a,bQRQNR,abQNR(ap)(bp)=1(1)=1=(abp)(pa)(pb)=1(1)=1=(pab)(pa)(p)=1(1)=1=(pab)(ap)(bp)=(abp)(pa)(pb)=(pab)(pa)(pb)=(pab)

第6题

在这里插入图片描述
在这里插入图片描述
根 据 欧 拉 准 则 , ( − 1 / p ) ≡ ( − 1 ) ( p − 1 ) / 2 ( m o d p ) 1. 若 p ≡ 1 ( m o d 4 ) , 则 存 在 k ∈ Z , 有 p = 4 k + 1 , 代 入 得 ( − 1 / p ) ≡ ( − 1 ) 2 k ( m o d p ) ≡ 1 ( m o d p ) 。 因 此 ( − 1 / p ) = 1 。 2. 若 p ≡ − 1 ( m o d 4 ) , 则 存 在 k ∈ Z , 有 p = 4 k − 1 , 代 入 得 ( − 1 / p ) ≡ ( − 1 ) 2 k − 1 ( m o d p ) ≡ − 1 ( m o d p ) 。 因 此 ( − 1 / p ) = − 1 。 根据欧拉准则,(-1/p) ≡ (-1)^{(p-1)/2} (mod p) 1.若p≡ 1(mod 4),则存在k∈Z,有p=4k+1,代入得 (-1/p) ≡ (-1)^{2k} (mod p) ≡ 1 (mod p)。因此(-1/p) = 1。 2.若p ≡ −1 (mod 4),则存在k∈Z,有p=4k-1,代入得 (-1/p) ≡ (-1)^{2k-1} (mod p) ≡ -1 (mod p)。因此(-1/p) = -1。 (1/p)(1)(p1)/2(modp)1.p1(mod4)kZp=4k+1(1/p)(1)2k(modp)1(modp)(1/p)=12.p1(mod4)kZp=4k1(1/p)(1)2k1(modp)1(modp)(1/p)=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值